

The only limitation is your imagination

Front cover shows aerials of
Bantiger television station operated by Swiss PTT Swiss collection.

in our next issue

 Wideband audio amplifier design by Yuri Milosiavskijaims at good transient res ponse using class A circui-
try and no overall feed-

Constructional design for multisection
equalizer is made ine equalizer is made inex
pensive by use of quad op amps and preset controls. A/so articles on community
broadcasting, an unusual
technique for metal detectechnique for metal detec-
ting and analogue computing methods. For details

of these see | of the |
| :--- |
| 85. |

 Trade Counter, Paris Garden, Lon-
don $S E 1$. Avaiable on microfilm:

 Sditorial \& Adverising offices:
Dorset House, Stamford Street, London SE 19 O. Stamford
Telephones: Editorial Telephones: Editorial $01-261$
8620. Adverising $01-2618339$
Tele Telegrams/Telex: Wiworid Bis-
nespres 25137 Bispas G. Cables
nis

 Student rates.
and $\$ 15.50$ outside UK.
.
.
.
 Telepone $01-8373636$. 3 .
Telebscriptions. Oakield House,
Perrymount Road. Haywards. Heath, Sussex RH16. 3 DH.
Telephone 044459188 . Please notify a change of address.
USA mailing agents: Expediters of

- IPC Business Press Ltd, 1980
ISSN 00436062
ibpa ABC

wireless world

ELECTRONICS/TELEVISION /RADIO/AUDIO

MAY 1980 Vol 86 No 1533

37 Current affairs
36 Designing with microprocessors - 1 by D. Zissos and L Valen
41 Weather satellite picture processor by G. R. Kennedy
47 News of the month UNESCO report on spectrum GLC call for citizens' band
50 Periphonic sound at AES convention
51 Letters to the editor Push-pull amplifiers The intelligent plug Pre-amplifier with no t.i.d.
55 Audio spectrum analyser by P. D. Hiscocks
61 Land mobile radio and spectrum utilization by P. A. Matthews
64 Digital capacitance meter p.c. layouts by A. Ryan
65 Programmable audio attenuator by J. M. Didden
71 Binary codes for error protection by D. A. Bell
76 Circuit ideas Cariable phase all-pass filter C.m.o.s. 60 kHz receiver Simple manual-reset latch
81 Why does an electron have inertia? by T. B. Tang
83 World of amateur radio
84 Outlook for short-wave broadcasting by J. Vastenhoud
86 Novatexts: LC oscillators by P. Williams

88 New products

```
90 Sidebands
```

13,4 Careers in the electronics industry

HITACHI PORTABLE OSCILLOSCOPES

WITH A TWO YEARS WARRENTY Satisfying a wide variety of needs

V－151 15mhz single trace

V－301 30mhz single trace

V－152 15 mhz dual trace

V－302 30mhz dual trace

The Hitachi－Denshi Oscilloscopes have been researched and produced by Hitachi Electronics specialists and has resulted in a range of modern Oscilloscopes which feature wider band Width，a compact design and light weight．
The circuitry in these new Oscilloscopes combines linear IC＇s and logic IC＇s plus modern manufacturing techniques，including automatic component insertion machines，thus ensuring and
Just look at these outstanding features
Trace rotation system for easily adjusting bright－line inclination caused by terrestrial magnetism． ＊X－Y operation，which is very convenient for measuring phase difference of two wave forms TV sync separator circuit facilitates rapid video signal measurements．
Extra high sensitivity ：vertical sensitivity of 1 mV div now available．
\％Built in signal delay line for leading edge observation of quick rising wave forms Sweep time magnifier effective for precise measurement：

In addition these Oscilloscopes will ensure that very feeble analogue signals can also be measured and any of the line voltages 100，120， 220 and 240

都
Hitachi－Denshi have a very informative illustrated brochure available on this new range，fill in the coupon and a copy
will be mailed to you by return．
（0）Hitachi Denshi（U．K．）Ltd．
Broadcast \＆CCTV Equipment Manufacturers
Loadge House，Lodge Road
Telephone： $01-2034242$

Measure Resistance to 0.01Ω
At a Price that has no resistance at all
New Elenco ：precilin Digital Multimeter M1200B

ONLY £55

YOU THIS SUPERB FOR A LIMIITED
PERIOD ONIY

THE ULTIMATE IN PERFORMANCE MEASURES RESISTANCE TO 0.01 OHMS VOLTAGE TO 100 MICROVOLTS，CURRENT TO 1 MICROAMPS AT LOWEST EVER PRICE！
FEATURES

3 $31 / 2$ digits $0.56^{\prime \prime}$ high LED for easy reading
－ $100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.01 \Omega$ resolution
－High accuracy achieved with precision resistors．
not unstable trimpots
－Input overload protected to 1000 V （excep
200 mV scale to 600 V ）
－Auto zeroing，autopolarity
supplied）or battery operation－built－in charging circuitry for NiCads
－Overrange indication
－ MODEL 7010 FREQUENCY COUNTER
St 9 DIGITS 10HZ to 600 MHz
ONLY E120＋VAT

Complete with built－in Nicads

－NBS Cailibation traceability
－lack Anodized Aluminium
Case

$\begin{array}{ll}: & 1 \text { pom TXCO } \\ : & 10 \\ \text { 1OMMZ time base } \\ \text { Optional external }\end{array}$

－AC／DC or Nicad re
batiery poperation
－Fullyear guarantee

\section*{| 100000000 |
| :--- |
| -7110 |}

Audix Limited, Station Road, Wenden, Saffron Walden, Essex CB11 4LG
Tel: Saffron Walden (0799) 40888; Telex: 817444

CROPICO-A CERTAIN MEASURE OF PERFECTION

Cropico, established as one of Britains

 leading manufacturers of precisionelectrical measuring equipment offer electrica measuring equipment, offer have been proved for accuracy and
performance throughout the world. pesistance Boxes

 Cropico - Britains leading manufacturer, exporter and importer
of precision electrical measuring of precision
equipment.
Request full details - Visitors Welcome CROPICO LTD., Hampton Road, Croydon CR9 2RU
Telephone: $01-684025$ and 4094 Telephone: $01-6844025$ and 4094
Cables: CROIC-CROXDON Telex: 945632 CROPCO G

CROPICO

We wouldn't knock our rivals.
After all, it was they who inspired us to design and manufacture our own power loudspeakers ... because of the oudspeaker components for our enclosures. Nobody could consistently supply components to the exacting HH standards of quality, power and performance - at any price.
So, our designers started from a clean drawing board and were prepared to defy convention in

profiles, whilst our scientists push back the frontiers of adhesives technology to develop new tested them relentlessly and did our
best to destroy these new products (that was the hardest part.) Now this range of superior power loudspeakers, crossover networks, "bullet" radiators, compression drivers and In theirnew and convenient packs you will also find an applications book, full of usefull hints.
Send for our brochure, so you can convince yourself why our components are superior, by following our logical
scientificarguments. Then you'll realise why we never need to

Power to the Performer.

 HH Acoustics.

MICROSYSTEM
MICROSYSTEM
DEVELOPMENT
USING SOFTY
sofTY is intended for the development of programs which will eventually become
software esesiding in ROM

MODEL 14 EPROM ERASERS

MODEL UV141 EPROM ERASER

- Fast erase imes (1ypicilly 20 minueses for 2708 EPROM)

- Priced at only 889.70 (in VAT, p\&p)
MODEL UV 10 EPROM ERASE

GP Industrial Electronics Limited

WW-006 FOR FURTHER DETAILS

TRUE AS AN Arrow

Professional Wire and Cable Fasteners for all installation requirements.
TELEPHONE - ELECTRONICS COMMUNICATIONS
ALARM SYSTEMS, ETC.
4 Precision made models.
12 difiterent staple sizes.
tion in chrome finish.
Grooved guide.
Grooved driving blade. Tapered striking edge.
Jam-proof mechanism Jam-proof
Short span easy compres-

Some of thè features that make an Arrow cable fastener the outstanding tool for all installation engineers.. Illustrated literature and details of staple sizes available from:
SPECIAL PRODUCTS DISTRIBUTORS LTD. 81 PICCADILLY, LONDON W1V OHL TEL. 01-629 9554. Telex 265200 (A /B RACEN) Cables: Speciprod London W1

WW-041 FOR FURTHER DETALLS

Cover thewhole band with one device.

This device.

The TPM 4100. From 100 MHz to 400 MHz .

Designed specifically for military applications the new TRW TPM push-pull RF power transistor offers some very worthwhile advantages.

It has been specially designed for multi-octave bandwidth high power applications and its internal matching and package configuration provide high input and output impedances. Power gain $7.5 \mathrm{~dB} \min @ 400 \mathrm{MHz}$

Maximum heat dissipation and operating efficiency are achieved by the use of multicell die design and ultra thin beryllium oxide header.

Diffused silicon ballast resistors and
TRW gold metallisation process give long term reliability and ruggedness.

The versatility of the TPM 4100 enables it to be used in a wide variety of applications, saving setting up and engineering time as well as reducing inventory.

TRW rersemconoucroas
MCP Electronics Ltd., Alperton, Wembley, Middx.

Keithley D.M.M. Test Equipment: Quality. With machines like the 169 shown above. $31 / 2$ digits; . 25% accuracy. A nononsense five function D.M.M. at a no-nonsense price. Only $£ 99+$ V.A.T.

Choice. The Keithley range spans Pocket, $3112,41 / 2,51 / 2$ digit D.M.M.'s,'many with I.E.E.E. options. So we can be sure of having exactly the right product for your own requirements. Built to a standard that very few people can equal.

Cost. And at a price even fewer can match From £79 + V.A.T., Keithley D.M.M. test equipment is backed by the resources of a pecialist company with a formidable reputation. To find out more, just fill in the coupon, and get your free literature today.

KEITHLEY

Keithley Instruments Ltd
Boulton Road Reading Berkshire RG2 ONL Telephone (0734)861287

E180

Advertisement produced co-operatively by:Akai, Fergıs on,Hitachi, JVC, Panasonic.

ww-032 FOR FURTHER DETALLS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings avaliable for 10-14 special scales can be inade to order.

Full Information from:
HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

In future, recording the present will be a thing of the past.

What's past is past. And said to be best forgotten. Play a selected portion of tape to find out what was said by who, to whom... and when And 'when' can be vital. Equally vital, particularly in emergencies when every second counts, is the ability to
obtain such replay access rapidly grecisely automatically With absolute certainty-and without time-consuming multiple knob-twiddl ing aided by guesswork Racal Recorders has recognized this need and produced TIMESEARCH - designed specifically for its ICR range of multi-channel communications recorders - and providing just these facilities.
ndexit onto the tane generate a coded time reference signal of crystal accuracy and speed for a pre-selected time signal and automatically initiate replay at that time.
In communications recording, the future becomes the present; the present become

And for providing precise time signals recording onto magnetic tape: the International Timing Unit.

Racal Recorders always on the right track

RACAD

Peace and quiet
 The quietest sound the ear can hear moves

 the eardrum about $10^{-9} \mathrm{~cm}$, one tenth the diameter of a hydrogen molecule. Movement due to random thermal bombardment of the eardrum by air molecules is around this same level and largely accounts for this limit of sensitivity.*But the distortion contribution from a QUAD 405 amplifier in normal use (say 85 dBa) moves the eardrum less than this amount:

Perhaps sitting in a very quiet room at $-100^{\circ} \mathrm{C}$ and without the music we might nearly hear thembut "'tis bitter cold."

For further details on the full range of QUAD products write to:

The Acoustical Manufacturing Co. Ltd. Huntingdon, PE18 7DB. Tel: (0480) 52561.

OUAD

for the closest approach to the original sound
QUAD is a Registered Trade Mark

Now circuit designing is as easy as pushing a lead
into a hole
No soldering
No de-soldering
No heat-spoilt
components
No manual labour
No wasted time
\%
and circuit modification
For quick circuit analysis and
diagramming
With or without built-in regulated power supplies
Use with virtually all parts - most
plug in directly, in seconds.
Ideal for design, prototype and hobby

nо	noot					OTHER
	P86	630	6	9.20	11.73	Kit
${ }_{2}^{2}$	${ }_{\text {P8 }}^{\text {P8 } 100}$	${ }_{9}^{760}$	10 10	11.80 1720	${ }^{14.72}$	
	${ }^{\text {P8B }} 102$	${ }^{1220}$	${ }^{12}$	2295	27.83	
5	${ }_{\text {P8 }}^{\text {P8 } 103}$	2250 $\begin{aligned} & 22060 \\ & 3060\end{aligned}$	- ${ }_{32}^{24}$	17245 34595 4595	41.34 5454 15	
${ }_{7}^{6}$	${ }_{\text {P8203 }}$	3060 2250 200	${ }^{32}$	45.95 55	54.56 65.14	5V @ 1 A
8		${ }_{2250}^{2250}$	24 24	74.70 5900	${ }^{87.63}$	
						8 Kkt

Tomorrows tools for todays problems

Carston Electronics

 Contact David Keanedy 01 267 $5311 / 2$

Space/Satellite/Military spec. background guarantees Merrimac reliability. Since 1967, Merrimac has
developed sixty seven different
items designe for more than
twenty five space and missile

BALANCED MIXERS POWER DIVIDERS PHASE SHIFTERS attenuators. DIRECTIONAL COUPLERS HIGH POWER CIRCULATORS IF/MICROWAVE SUB SYSTEMS PHASE COMPARATORS IMAGE REJECT MIXER SSB MODULATORS Quadrature couplens QUADRAPHASE MODULATORS
applications. Many other Merrimac signal Many other Merrimac signal kinds of military y aircraft - high reliabity has been acomman
denominar.
$A s$ UK agent for Merrimac, As UK agent for Merrimac,
Pascall can offer the most comprehensive standard product
line of signal processing line of signal processing
components in the industry - over
seven hundred and fifity catalogue items from DC to 18 GHz incorporating lumped eleoleny'
stritine or ferrite tehnology. And
if this isn't tufficient to meet your requirements Serrimac ofters
custom designed derivatives of all
these products which these products which surely will.
Pascall in-depth service and
advice hYbRID TEES AMPLIFIERS SWITCHES
n prompt deliveries, an efficient
technical and advisory back-up
plus expertise on application
problems.
Get the fa
today from:
today from: Pascall Electronics Limited Hawke House, Green Street, Sunbury-on-Thames, Telephone: (09327) 87418 Telex: 8814536
carbon film RESISTORS
PRICES REDUCED. SEND FOR DETAILS NOW
—

Krohn-Hite Function Generators

But not only sweep!
Tone-burst, sine, square, triangle and ramp pulse outputs re all embodied in the new 1600 , which includes buill-in pause marker, and a trequency range of 0.2 Hz to $\mathbf{~ M M H z}$.
The 1600 is one of the many Function Generators avaliable from Krohn-Hite, with frequency ranges of between . 003 H To 30MHz. Prices start at around Together with our Filters, Oscillators, Amplifiers Together with our Filters, Oscillators, Amplifiers,
Phasemeters and Distortion Analyzers they form the basis of a supertb range of equipment for general purpose, audio and communications areas.
To find out more fill in the coupon.
And see why Krohn-Hite are sweeping the board!
KEITHLEY
Keithley Instruments Ltd
1 Bouiton Road Reading Berkshire RG2 ON

Britain's first complete computer kit.

A complete personal computer

 for a third of the price of a bare board.

Also available ready
assembled for $£ 9995$
The Sinclair ZX80.

 surpassing other person anl computers on the
market at several times the price
 do quite literally anything from playing chess
to running ap wer station.
The EX8 80 is pleasantly straightforward to assemble, using a fine-tiipped solddering inon.
Once assembled, it immediacly proves what a good ob yout ve donene. Conarecty proves it oyhar IV

set... link it to an appropriane power source Your ZX80 kit contain | - Pri |
| :--- |
| all |
| ald |
| Co | - Complete components set, including all - leading suppliers. - sensitive, wipe-clean.

- Leads and plugs or connection to domestic
 - FREEE coursc in BASIC programming and User manual.
Optional extras
- Mains adaptor of 600 mA att 9 V DC nominal unregulated tal
separately - sce coupon - Additional memorrvenansion boards
allowing to to bytes R.t.1. Extra R.11
ald Use a 600 mA at 9 Y PC Mominal unireyulated mains Two unique and valuable components of the Sinclair ZX80
\qquad
 The unique Sinclair BASIC interpreter. offers remarkable programming advantages:

 faults only discovered when you try to run the
- liscellenn string-handling capahility takes
up to 2 striny up 1026 string variahles of any length All
strings can undergo all relational tests c .
 Strings do mol need tot he wimencessioned.
- Up to 26 single dimension arral
- Variable names of any lenght.
arithmetic, cond atitional lexpress.onsons, ctc.
- Exxcentionally powertul edit facilitics, allo
modification of cxisting provram linces
- Randomise function, usisful for tames
- Timer under program conirol.

coseris marructions, USR causes iump to

compact design, volume production more power per pound The Mr80 © wres its remarkkible
low price
 The Sinclair ZX80. Kit: $£ 79.95$ Assembled: $£ 99.95$. Complete!

 he delisered. If you choose not to wail, you can
cancel your order immed dially, and your money have arefund option for 1 tedays of after your you
compuler is despalthed compuncer is despatched
satistifich hevond dill dout
doubt that tou will he:

$\square \square_{\square} \square \square$

Science of Cambridge Ltd

[^0]
Order Form

To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN
Rememher: all prices shown incluld ${ }^{\prime}$ 'AT, postage and packing. No hidden extras.
Pleases send me:
Quantity \quad Item

WIRELESS WORLD, MAY 1980
0.01 Hz to 999 KHz

SINE, Sauare and triangle
digtal seting
dC OffSET
programmable
SImultaneous outputs
50Ω MAIN OUTPUT
(10V.: attenuable)
TYPE 643A FUNCTION GENERATOR

FROM OMB ELECTRONICS WW - 005 FOR FURTHER DETALLS

Electronic

 components FAST.... way service is designed to get thurry, call Verospeed. Our service is designed to get hem to you withour delay. We hold over 1300 product lines in stock for immediatesame day despatch to solve your R \& D problem or same day despatch to solve your R \&
production hold-up.

$$
\begin{aligned}
& \text { The range covers active components, meters and } \\
& \text { modules, packaging and assembly and production }
\end{aligned}
$$

$$
\begin{aligned}
& \text { modules, packaging and assembly and production } \\
& \text { tools - so when you need components fast, }
\end{aligned}
$$

 wW-080 FOR FURTHER DETAILS

Pan the80's with the best

K1000 \& K2000 SOLDERING IRONS

-16w Producing $420^{\circ} \mathrm{c}$
(Helping the Save-it campaign) - PUSH-IN TIPS

- GMONTHS GUARANTEE

ADCOM
United Kingdoms Leading Soldering Instrument Manufacturers Tel. 01-622-0291/4
ADCOLA PRODUCTS LIMITED
GAUDEN ROAD, LONDON SW4 GLH ww-009 FOR FURTHER DETAILS

> SOUTHERN ELECTRONICS
> 6 WESTCLIFF ARCADE, RAMSGATE, KENT
> TEL. THANET (0843) 57888

Our main competitor!

The stiffest opposition we find against making a sale for a bench power supply is your old friend alongside. There are thousands of them still working perfectly after more than 10 years in service.

Around $40,000 \mathrm{~L}$ series bench power supplies have been sold and the latest units are still uncompromising in performance and reliability. They provide constant voltage or constant current, feature large recessed meters, overload and shortcircuit protection, coarse and fine adjustment controls, a separate output switch and LED indicators for mains on and current limit.

Models available			
L50-05	0-50V, 0.5A	L12-10C* 0 - 12V, 10A	
L30-1	0-30V, 1A	LT50-05 twin output unit $2 \times 0-50 \mathrm{~V}, 0.5 \mathrm{~A}$	For full specification and prices contact:
L10-3C*	0-10V, 3A	LT30-1 twin output unit $2 \times 0 \sim 30 \mathrm{~V}, 1 \mathrm{~A}$	0
L30-2	0-30V, 2A	LT $30-2$ twin output unit $2 \times 0-30 \mathrm{~V}, 2 \mathrm{~A}$	(0) I I 110
L30-5	0-30V, 5A	*with adjustable overvoltage protection	

INTERFACE QUARTZ DEVICES LTD 29 Market Street, Crewkerne, Somerset TA18 7JU Crewkerne (0460) 74433 Telex 46283 inface g ww-052 FOR FURTHER DETAILS

wireless world

Editor:
'Deputy Editor PHLLIP DARRINGTON
Phone $01-2618435$

Technical Editor: GEOFFREY SHORTER, B.S
Phone 01-261 8443

Projects Editor MIIKE SAGIN
Phone: $01-26184$ Communications Editor: TEm PARRATT, B.A.
Phone $01-2618620$. Drawing Office Manage

Technical Illustrator:
BETTY PALMER
Production \& Design:
ALAN KERR
Advertisement Controller:
Advertisement Conı
G. BENTON ROWELL
Advartisement Manager
BOB NIBBS, A.C.I.I.
Phone $01-2618622$
DAVID DISLEY
DAVID DISLEY
Phone $01-2618037$
BARRY LEARY
Phone 01-261 8515
Classified Manager:
BRIAN DURRANT
BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423
mike thraves
(Classified Advertisement
JOHN GIBBON (Make-up and copy)
Phone 01-261 8353
Publishing Director:
GORDON HENDERSON

Current affairs

If the recent correspondence on displacement current has done nothing else it has drawn our attention to the pitfall that awaits us if we take a mental model as the whole truth about a phenomenon. Under examination is a model in the form of a set of equations reality. We see immediately that equations are like architects' drawings -precise, quantitative, stating relationships between quantitites but stopping somewhere short of a building. Like all mental models they lack body. The pitfall that awaits us is what A. N. Whitehead called "the fallacy of misplaced concreteness" -
the mistake of attributing reality to the mistake of attributing reality to
what is no more than a construct of the mind. Because there is a word (or symbols) for it, and a corresponding mental picture, we assume it exists as a concrete entity
As for displacement current, our readers may be forgiven if they feel
confused by the various statements made about it by contributors. One author says the fact that the solution of Maxwell's equations is a propagating through the existence of displacement current" and issues the rallying cry "no radio waves without displacement current." A correspondent then asks (presumably thinking of propagation in
outer space) "what is displaced in a vacuum?" to which there is no direct answer. And later another
correspondent remarks "presumably co one is insisting that everyone must : believe that there is any physical reality
in a current which is said to flow in empty space when there is nothing to carry it
The puzzling question is: how are we justified in describing as an electri
current something which has no physical reality as a motion of charge? Perhaps the answer is because displacement current exists in one respect anyway as a rational construct
of the mind. We can consider this in the light of Kant's "mind contribution" supplies a priori concepts, independent of all experience (e.g. the truths of formal logic), to which we make our Kant's Critique of Pure Reason. (S When we consider any current intuitively, as a movement of charge in a conductor, its concreteness seems beyond question, especially when we are able to feel the heat or see the light
or sparks it produces. But as soon as we try to define it quantitatively in the way we do as a rate of flow of charge Q / t, we move into an abstract world; for a rate is not an empirical fact but an a priori concept, independent of all logic and mathematics Current may flow but current strength doesn't: it exists, as a correspondent has pointed out. It is a pure concept, isolated from those realities of practical circuits in electrical potential and energy to pus round the needle of your ammeter. Similar considerations apply to the rate of change of electric displacement, $\mathrm{dD} / \mathrm{dt}$. When a current is shown in equation we are not seeing a full representation of a real current but merely a symbol or symbols for one of the properties of a current, its strength, defined as a rate
Writers often refer to the "necessity" for displacement current in Maxwell's itself a compelling proof of concrete existence. But, of course, necessity is not an empirical fact. As Hume showed in his famous analysis of cause and exists in the mind, not in objects... (e.g. logical necessity).

To confuse a priori concepts such as necessity and rate with physical necessity and rate with physical
realities is to be caught in the fallacy of
misplaced concreteness.

Designing with microprocessors

1 - Basic components of the microprocessor chip
by D. Zissos and Laurelle Valen Department of Computer Science, University of Calgary, Canada

This series of articles responds to the need "to demonstrate the
respectability of the microprocessor as a down-to-earth, extremely useful,
but entirely non-occult electronic but entirely non-occult electronic is intended for electronics engineers who want to learn how this component can be used in the design of systems. The authors therefore use formal, step-by-step procedures in operates. This first article deals with the basic components of eight- and sixteen-bit microprocessor chips and the second will continue with their internal opera

The starting point in the design of: microprocessor-based systems, and inworking knowledge of hardware, software and of their interaction. This view although not generally accepted, is be coming more widespread. The roots of early 1960 s, when computers were be coming widely used. Because of the lack, at that time, of formalized hard ware design procedures, much of the research effort was directed toward independent languages. This resulted in thick layers of software administered by bureaucrats being erected around the machines. In the 1970s formal methods for the design and implementation of were, and still are, being ignored by main-frame users. The evolution of m.s.i. and l.s.i. (medium and large scale integration) chips in general, and of such an attitude progressively more difficult to sustain and justify, as the software/hardware barriers erected in the 1960s are not easily tolerated today. We shall therefore start the series by work.
The newcomer to this area will b relieved to learn that basically there is no difference between various microprocessor chips, in spite of attempts to
classify them into various categories, or, for example, into three generations Their difference (as with cars) is one of
refinement rather than substance. The reader should be aware that, in general, ise, and that one may calls for experproblems with a less experience fewer microprocessor chip than with the 'lat st' and 'fastest'. As we shall see later, ast system response (if desired) with present-day knowledge, becomes a management rather than a technical problem.

The microprocessor chip From the user's point of view, the accepts control data and problem data and produces processed data, as shown in Fig. 1. The control data is commonly eferred to as op codes, and the proble From the desig

Operand is defined as the entity on which
operations are performed.

Fig. 1. The microprocessor from the
user's point of view.
 designer's point of view.

Fig. उ. Status and control signals of the Intel 8080 microprocessor chip.

WIRELESS WORLD, MAY 1980
microprocessor, in addition to perfor given data can ling and operations on signals, the control signals in Fig. 2 Such signals are used to interrupt the direct memory access cycle, and so on. In common with all digital circuits, microprocessor chips generate status signals, indicating their internal state The wires carrying the control and
status signals of a microprocessor chip are collectively referred to as the control bus, denoted by letter c. Similarly the set of wires carrying the data in and out of a microprocessor chip is referred to as the data bus and is denoted by d.
The address bus is the set of wires that carries address signals and is commonly denoted by a. Note that in the case of 16 -bit machines, as we shall see later, the same sets signals on a time-sharing basis.
The status and control signals of the Intel 8080, Motorola 6800 and the Inte $8085^{2,3,4}$ are shown in Figures 3, 4 and 5 respectively.
In Fig. 6 we show the basic configufunctions of the interface blocks are to monitor the status of signals of the microprocessor chip and of the corres ponding peripheral, and to generate the
correct sequence of command (control) signals that will allow them to communicate with each other.
The basic components of a typical microprocessor chip from the designer's point of view are

Addressing registers (r)
The arithmetic and logic unit (a.lu.) Condition flags
The instruction
The instruction register (i.r.)
The program counter (p.c.)
The timing and control unit ${ }^{\text {s. }}$ Their basic functions are as follows.

Accumulator (acc.). This is a register which is used to hold incoming and upecified arithmetic and logic ome o tions. Some microprocessor chips have more than one accumulator; for example, the Motorola 6800 has two accumulators, A and B .

Addressing registers (r). Any interna register that can be connected to the address bus will be referred to as an addressing register. Examples of ad dressing registers are: register r in Fig. 7 (s.ps), index registers (ixs) and so on.

Arithmetic and logic unit (a.l.u.). This Arithmetic and logic unit (a.l.u.). This arithmetic and logic operations.

Condition flags. These are one-bit flip-flops whose set/reset states ar determined by the result of the execu tion of certain instructions. They a.l.u. operation is negative, zero, o

A ' 1 ' indicates ' $1 / 0$ e execute'
$A^{\prime} O^{\prime}$ indicates data out from 8085
A' 0 ' indicates d bus in input mode $/$ Not limited to $1 / 0$: This signal is generated during the instruction cycle after an
inTR
interumpt signal is ace
has has the same timing as BD RD (pir 32 .
 address information
ddicates 8085 is being rese dicates 8085 is being rese Serial input data
Serial output data
System clock.
*Tristated during 'software halt'
Fig. 5. Status and control signals of th intel 8085 microprocessor chip.

Fig. 6. Basic configuration for single-processor systems.

Weather satellite picture processor

Visible and infra-red pictures from the TIROS-N series

by G. R. Kennedy

This signal processor produces real-time visible and infra-red weather pictures side-by-side and correctly exposed. Up to four satellites may be preset on the unit, which has been designed for high quality pictures from the 137 MHz transmissions. For a description of a facsimile machine suitable for use with this processor, and for background information on weather satellite reception, readers should refer to previous articles by the author, listed in the references.

 A prototype of the latest Americanpolar orbiting weather satellites TIROS-N (TIROS X1, 1978-96A), was launched on October 13, 1978. One of the main differences between the
TIROS-N series and the ITOS (NOAA) predecessors is the improved picture definition. This is due to improved scanning radiometers and a faster scanning rate, 120 r.p.m. compared with Two channels of picture information are sent on the v.h.f. transmission and in normal use one channel is infra-red while the other is in the visible spec trum. The choice is made at ground able of sending, on v.h.f., two of five available spectral range pictures from the S-band repertoire. Images received on one of the two frequencies used for he TIROS-N series, 137.50 and 4 km and have image-distortion correction so that the received pictures are flat, and do not suffer from "bottle distortion" as with earlier satellites. The eceive antenna needs to be right-hand must cope with a peak 2.4 kHz deviation of $\pm 17 \mathrm{kHz}$. The TIROS-N series v.h.f. video format is shown in Fig. 1 and a block diagram hown in Fig. 2
iming signals, locked to the satellite subcarrier signal, for use within the processor and externally for fax machine or oscilloscope synchronization. A phase-lock-loop is used, precclock circuits immune to signal amplitude variations. The p.1.1. output is buffered by a Schmitt trigger and divided to produce the

A linear channel handles the video It normally amplifies the visible spectrum satellite channel which has a high dynamic range and is fairly con stant in mean level throughout the year all within a reasonable range of geo graphical latitude. The linear channel comprises four parallel linear used as a reference against which the third channel is adjusted. After inverion, the amplified signal is applied to an analogue hannels
Alog.-channel is used to process the Ara-red video signals. However, there re several problems in producing good pictures, such as the small f.m. subcar rier deviation for a large dynamic pic-
ture-content change. This is due to temperature variations, for example, he coldest cloud tops can be at $-60^{\circ} \mathrm{C}$ and the warmest land at about $40^{\circ} \mathrm{C}^{3}$. If a coastline is to be depicted, which aids generally more interesting, only small

Fig. 1
series.

MI = Modulation Index
differences of a few degrees can b xpected. Because these changes are advantage can be taken of the logarith mic amplifying process where the gain maximum at low (i.e. warm) signa vels and reduces with an increase in amplitude. Therefore, the coastline can ems, with their large temperatur ariations, can be shown quite clearly wo problems with this technique ar he level at which log. amplification perature with season and latitude. In his design a variable control with a dial is used which allows resetting for dif erent orbits. The approximate mean picture level for the i.r. channel portion of the visible channel. The unny part of the visible channel is used ecause it is normal to see the dayligh erminator on a polar orbiter, especially roducing the i.r. and visible picture side-by-side and observing, from the i.r scene, the weather in the darkened visible section.
After the input level potentiometer, amplification of the signal, or expansio

$$
\longrightarrow>
$$

D "Problems and solutions in logic design,", second edition, Oxford University
Pers, 1999 . Press, 1979.
2 Intel 8080

$$
0 \text { microprocessor user's manual. }
$$ Intember 1975 .

3. M6800 microprocessor system design data, Motorola, 1976.
MCsso user's manual (preliminary), Intel 5. Zissos, D. "System design with micro processors," Academic Press, 1978 . miong and software development," Prentic miong and software development," Prentice
Hall, 1979 .

Scientific computer club

Following the publication of a two-micro processor scientific computer design (April
to September 1979 and January to Februar to September 1979 and January to February
1980) we have received a large number of quests for more information and details of clubs linked to this design. We are therefore pleased to note the formation of a compute
users' club for the Adams we hope will stimulate interest in this design and encourage correspondence between readers.
To sta To start the ball rolling a monthly
newsletter, starting in May, will be circu lated by Phillip Probetts to members for an tage. John Adams, the designer, will contribute a series of articles describing the computer in greater depth, and he will also
help to answer members' queries The issues answer members' queries. The early clude programming information and examples, while later issuus will reflec grammes, letters and comments. Fendaack is important, so send subscripto Phillip Probetts, 50 Crom well Road
before amplification. For TIROS X1, expansion is not essential, but the
facility is available for other or later facility is available for other or later sy four separately switched amplifiers in parallel as in the visible channel. The output of the selected amplifier is fed to the common analogue-switch and, because the log. amplifier inverts the The analogue-switch multiplexes a number of analogue signals together in a serial mode. With timing from the clock channel, the switch adds the lin- ear and log. signals in time sequence
and produces a picture scan-line of and produces a picture scan-line of
each, correctly processed and in sync. with the transmitted satellite signal. This is followed by a linear output
amplifier which produces a signal suitamplifier which produces a signal suit-
able for a fax machine or an able for a
oscilloscope.

Circuit description

The clock channel is shown in Fig. 3 . The 2.4 kHz demodulated subcarrie amplitude modulated with the picture information, is amplified by IC_{1}. Signals are a.c. coupled in and out of the amplifier so that the mean 2.4 kHz signal for printing TIROS-X1 transmissions, but it is required with some Russian Meteor signals which may be required to produce weather pictures. Some of
these signals, which also use the 2.4 kHz subcarrier, have almost 100% amplitude modulation. The amplifier stage at the
beginning of the clock chain ensures that the final pictures stay in lock by providing, under all usable signal levels,
sufficient 2.4 kHz to lock the following p.l.1. The input amplifier is followed by two limiter stages around Tr_{1} and Tr_{2} which comprise ladder-feedback tuned amplifiers with a.c. coupled back-toback diodes at their inputs. Only the amplified and the working point is around the zero-crossing of the subcarrier signal. In this way, amplitude modulation is ignored and the 2.4 kHz is selectively amplified. The output of the
second limiter feeds the p.1.1. whose v.c.o. frequency is set to 2.4 kHz by R_{18}, R_{131} and C_{18}. The loop bandwidth can be ${ }_{\text {selected by }} \mathrm{S}_{2}$, and the values of C_{21} and C_{22} give a good compromise for weak and strong signals. For a strong signal, a wide bandwidth gives solid londwidth
sharp pictures. A narrow bandwin may be necessary in the presence of noise, but if noise impulses exceed the tracking range of the loop, a cumulative
phase error can occur along the picture phase error can occur along the picture
line to give locked and noisy pictures with vertical ripples at the right-hand side, for a left to right picture. The loop can be unlocked by S_{1}, which is best. the locked-loop condition. The rate of locking is set by R_{132} and by this means, the edge of the picture and the order of

WIRELESS WORLD, MAY 1980
the i.r. and visible channels across the final image can be set. Automatic phasing can be added by replacing S_{1} with a pair of transistorsiers by two
frequency-selective amplifiers tuned to 1040 Hz and 832 Hz . Seven cycles of either frequency preceed each of the channels. Normally for TIROS-X1, the i.r. channel is preceded by the higher
frequency with a 50% duty cycle, and the visible by the lower frequency with
a 60% duty cycle. The 2.4 kHz output of the p.1.1. is a.c.
coupled to Schmitt trigger IC ${ }_{13}$ which coupled to Schmitt trigger $1 \mathrm{C}_{13}$ which
squares the signal at t.t.l. level. This is squares the signal
buffered by $\mathrm{Tr}_{3}, \mathrm{Tr}_{4}$ and Tr_{5} to an exter-
nal socket for fax and oscilloscope use, and also fed to a series of dividers. IC $_{4}$ divides by 12 to give 200 Hz , part of IC5
divides by 5 to give 40 Hz and IC divides divides by 5 to give 40 Hz and IC_{6} divides by 10 to give 4 Hz with an equal mace ratio. The 4 Hz is distributed to Schmitt trigger IC_{3} which buffers the signal to an external socket, to part of $I \mathrm{IC}_{5}$ which divides by 2 and provides a t.t.l. 2 Hz sync. signal at an output socket, and
also to flip-flop IC_{7} where it is again divided by two with an equal mark-tospace ratio to provide a TIROS strobe signal. The division state can be inverted by reset-switch S_{8} which sets the is used for printing just the i.r. or visible satellite channel. When using a facsimile recorder, printing only one image gives a print twice the size. The drum speed is 240 instead of 120 r.p.m. for the
pair, and the strobe pulse, which is high pair, and the strobe pulse, which is high
for exactly half of the satellite video

IRELESS WORLD MAY 1980
line, keys the fax light-souce off for the channel being printed can be changed This is a useful feature in winter when he southerly portion of a norther hemisphere pass can be printed in vis may be in darkness, printed in i.r. without losing picture lock. The strobe pulse is taken from the flip-flop Q output, and he Q output passes via S_{3} to a pair of op-amps in IC_{12}. These amplifiers con indicators which show log. or lin. status. With S_{3} in the TIROS position, C_{12} is driven at 2 Hz and, because no feedback resistor is used, the output latches from -12 to +12 V at 2 Hz . Opat 180° out of phase, and this pair of outputs switch the lin. and log. channels on and off once per video line. With S_{3} in the normal position, S_{7} (log./ lin.) sets the Q and Q lines of the analog The linear channel and analogu switch are shown in Fig. 4. The 2.4 kHz video signal is taken via S_{6} to one op mp in IC_{11}. Each amplifier has a gain control and a level setting potengiven satellite without affecting the other amplifiers. If four satellites are not required, optimisation for a particula satellite can be tried without losing the previous settings. The output of the
selected amplifier goes to IC gain inverter, which feeds part of analogue switch IC_{13}. The circuit has been designed so that only positive going signals are accepted. Both video channels pass through an inverted
arrangement of two analogue switches where the series arm has a $47 \mathrm{k} \Omega$ resistor in series and a further $56 \mathrm{k} \Omega$ resistor to the next stage. At the junction of these resistors the shunt switch connect
directly to ground. By keeping the out put impedance high, turning on the shunt switch effectively stops any signal leakage. The on resistance varies with load conditions and supply rails, in this circuit it is around 600Ω. Again, switch resistance insignificant compared with the two resistors. also, when the shunt switch is on, its resistance is minute compared with the leakage, so the overall signal leakage is very low. The output of IC the series switch, and $\mathrm{IC}_{12 \mathrm{c}}$ controls the shunt switch. The output of each part of the dual switch circuit is summed by $\mathrm{IC}_{12 \mathrm{~b}}$ whose gain is selected by R_{73}. A which gives a gain of 12 and is suitable for the facsimile machine published from Dec. 1976 to July 1977
The logarithmic channel is shown in Fig. 5. The input video signal is passed
through a potentiometer to set the amplitude and the scaled signal then passes to an expander ${ }^{4}$ with resistors altered to suit standard values. With S_{4}

and a resistor is placed in the op-amp feedback paths to prevent spurious oscillation. The video signal is then a.c.
coupled to a rectifier. The later coupled to a rectifier. The logarithmic ${ }_{\mathrm{Tr}}$, generates a logarithmic output vol tage from a linear input current. Tran sistor $\mathrm{Tr}_{6 \mathrm{G}}$ is the non-linear feedback element for $\mathrm{IC}_{19 \mathrm{a}}$ whose output current is fed around R_{111} and Tr_{6} to the sum-
ming input. $\mathrm{Th}_{\text {erefore, }}$ the loop current is directly proportional to the input voltage at $\mathrm{R}_{110} . \mathrm{IC}_{9 b}$ and $\mathrm{Tr}_{6 \mathrm{~b}}$ form a constant current circuit where the current through R_{114} is equalled by the of $\mathrm{Tr}_{6 b}$ Therefore, the emitter olector tage of $\mathrm{Tr}_{6 \mathrm{~b}}$ is constant and, with the base of $\mathrm{Tr}_{6 \mathrm{G}}$ grounded, the base of $\mathrm{Tr}_{6 \mathrm{~b}}$ must rise or fall by a voltage logarithmically related to the input voltage at R_{110}. Due to the temperature depen-
dence of the circuit ${ }^{5}, \mathrm{R}_{122}$ should be $1 \mathrm{k} \Omega$ and have a positive temperature coefficient of $+0.3 \% / \mathrm{degC}$. For normal room conditions a standard high
R_{136} sets the offset voltage for $\mathrm{IC}_{9 \mathrm{a}}$ and provides some control over the lowe
threshold at which logging starts. Diod threshold at which logging starts. Diode D_{12} prevents damage to the dual tran-
sistor if the +12 V rail sistor if the +12 V rail momentarily goes
negative at switch-on. Capacitors C_{3} and C_{38} prevent the op-amps from oscillating, and C_{36} decouples the supply.
The logarithmically amplified and of the linear amplifiers in IC_{10}, and the selected signal is fed directly to IC_{1} which switches in the same way as the linear channel.
Construction
The linear and log. channels should be separated to avoid crosstalk and to enable adjustments to be mad without confusion. The gain controls,
which are seldom altered after their initial adjustment, can be ordinary car bon presets mounted on the circuit board. The level controls, which are

Fig. 3. (top) Clock channel.
Fig. 5. (bottom left) Logarithmic channel.

Fig. 4. (bottom right) Linear channel.

cermet types and have screwdriver access through the instrument case. If fax in a darkroom, it is worth building the instrument either inside the fax
machine, or in a shallow case undermachine, or in a shallow case under-
neath. Also, any l.e.ds or lamps should be red if bromide type paper is used. It is helpful to use large white lettering for dim-light operation, and to mount the slip/lock switch S_{1} at a comfortable ${ }_{\mathrm{R}_{132} \text { pon be a screwdriver slot preset, but }}$ R_{133} must be noise-free, smooth to operate, well positioned for easy adjustment and fitted with a turnscounting dial if high quality prints are to mechanical dial is better than an engraved analogue type. The outputamplifier gain resistor may need to be changed if a different readout device is used, and solder pins on the circuit
board make the removal of R_{73} easier. The power supplies are not critical, but they should be well smoothed. A suitable circuit for the $1 / 2 \mathrm{~A}+5 \mathrm{~V}$ supply is shown in Fig. 6. The $\pm 12 \mathrm{~V}$ supplies should be stabilized and rated at 100 mA .
If the dual transistor Tr_{6} cannot easily be obtained, two 2 N 3704 devices can be epoxy cemented together
To ensure that the circuits, particularly the log. amplifier, are temperature After satellite acquisition, slip S_{1} to establish the picture edge position on the fax or oscilloscope, and select either the side-by-side order of the visible and
i.r. channels or, by using S_{3} and $\mathrm{S}_{\text {, }}$ i.r. channels or, by using S_{3} and S_{7},
select one picture or the pair. At the extreme ends of the pass it may be necessary to narrow the p.1.1. bandwidth with S_{2}, but normally this can be left in the wide position

References

1. Kennedy, G. R. "Weather satellites ground station,"
Jan. 1975.
2. Kennedy, G. R. "Weather satelite picture facsimile machine," Wireless World, Dec.
1976, Jan., Feb,, March and July 1977 1976, Jan., Feb., M. March and July 1971 .
3. Anderson, R. . et al "Application of meteorological satellite data in analysis and
forecasting" ESA Technical forecasting," ESSA Technical Report NESC
51, March 1974, National Oceanic and

Atmospheric Administration, Washington, D.C. 20233, USA. 4. Baylis, P. E., Brush, R. J. H. "Contrast
expansion processor," Wireless World, Dec. expansion
1973.
5. Dobkin
19. Dobkin, R. C. "Logarithmic Converters,"
application note 30 , Linear Applications application note 30 , Linear Applications
volume 1, third edition, 1973, National Semiconductor Corporation, Santa Clara, California 95051, USA.

NEWS ORFTHE MONTITM

Spectrum is "common property of mankind"

The electromagnetic spectrum and the geostationary orbit for satellites, both of which
are natural resources, should be more equitare natural resources, should be more equit-
ably shared as the common property of mankind. This is one of the conclusions of the final report of the International Commission
for the Study of Communication Problems for the Study of Communication Problems
which was recently presented to the which was recently presented to the
director-general of UNESCO. The 16member commission has welcomed the deci-
sions taken at WAR 99 to convene a series sions taken at wre to convene a series
of conferences over the next few years on of conferences over the next few years on
specific aspects of the utilization of these resource
p. 72).
p. ${ }^{\text {The }}$). report deals comprehensively with the right to receive, seek and impart information
as a fundamental human right. and its main as a fundamental human right, and its main
message is the need for a greater democratimessage is the need for a greater democrati-
zation of communications (as discussed in our December 1979 leader). It takes the view that fundamental communication problems
transcend mere media questions and recomtranscend mere media questions and recom-
mends that communication "be no longer regarded merely as an incidental service and
its development left to chance" its development left to chance". In setting up
new systems "preference should be given to non-commercial forms of mass communication" and, while obbiously the media need their revenues, "ways and means should be
considered to reduce the negative effects that the influence of market and commercial considerations have in the organization and,
content of national and international comcontent of national, and international com-
munication flows". The report points out munication flows". The report points out
that "the freedom of the citizen to have access to communication, Both as recipient
and contributor, is not the same as the and contributor, is not the same as the
freedom of an investor to derive profit from freedom of an investor to derive profit from
the media while remaining indifferent to quality and content."
On broadcasting
On broadcasting, the "development of.
comprehensive national radio networks, capable of reaching remote areas, should take priority over the development of televi-
sion ..." and "national capacity for prosion ..." and "national capacity for pro
ducing broadcast material is necessary to obviate dependence on external sources..." For communities in developing countries
"local radio low-cost, small-format television and radio systems and other appropriate sion and radio systems and other appropriate
technologies would facilitate production of
programmes relevant to community deveprogrammes relevant to community deve lopment efforts, stimulate participation and
provide opportunity for diversified expres-
sion".
Tariffs for telecommunications, the report says, "are one ol and balanced flow of information. This situation must be corrected, especially in the case of developing countries, through itiatives. Governments should in particula examine the policies and practices of their post and telegraph authorities. Profits or
revenues should not be the primary aim of such agencies. They are instruments for policy-making and planned development in the field of information and cul
ture...International action is also necessary to alter telecommunication tariffs that ${ }_{\text {milta }}^{\text {to }}$ itate heavily against small and periphera
users...UNESCO might, in co-operation with ITUU, also sponsor an overall study of
international telecommuncet means of satellite transmission in collaboration with Intelsat, Intersputnik and user country representatives to make proposals of geostationary satellite development." or geostationary satelilite development."
The new technologies coming into communication have both great potential and
great danger, says the report Countries should evaluate their social implications and should promote "participation and discus-
sion of social priorities in the acquisition or extension" of these new technologies. Deci-
sions on "the orientation ions on the orientation given to research public scrutiny". Concentration of communications technology in a few developed "has led to virtual monoply situations in this field. To counteract these tendencies national and international measures are required,
among them reform of existing patent laws among them reform of existing patent laws
and conventions, appropriate legislation and international agreements.

Australian Air Force up-dates

its technology

William Scholes, a contact in Sydney, reports
that the first trials of laser-guided bombs (LGBs) in Australia, using a Mirage fighter the RAAF, were held recently at the The trials, conducted by Tas ments (USA) in collaboration with the De fence Science Research Centre and the Air direct result of Prime Minister Fraser's ponse to the American call for "increased survelilance of the fncian Ocean area by devices are needed to improve surveillance has not been explained. LGBs use semi-active oming devices in that they contain passive energy which has been reflected or scattered from a target, previously illuminated by a separate laser source. The angular displacethe direction of the laser radiation is meas ured by the LGB's guidance system and

Engineers checking operation of the
LGB guidance head using a flight line
test kit.

correction signals are sent by means of a tion of the bomb's strap-on wings. The flight path is corrected accordingly and the bomb During tha During the Vietnam conflict, both the
USAF and US Navy employed as electro-optical guided bombs. The bombs used a similar form of visual target dentification but were equipped with greater flexibility than the LGB method.

Microprocessor applications
 for the disabled

The Bias ' 80 exhibition, to be held in conunction with Microelletronica in Mila
from June 4th to 8th 1980, includes a com petition for projects aimed at helping hand addition to prizes in the form of systems instruments and other items of electronic ested in competing should bear in mind that the projects should be useful as aids to disabled persons such as those who are blind communication, expression and/or move ment. Consideration will also be given to other unconventional applications of microprocessors not strictly tied to the subject of
the competition provided they are of rea interest in the bioengineering or medica lectronics field.
Special prizes will be presented in this
section. Projects should be presented with ection. Projects should be presented wit
lock diagrams and circuits, hardwar complement, software, cost, weight and desirable but not essential. Entries should each the competition secretariat no later an May 20th 1980. Phone or write to Studio Barbieri, Viale Premuda
Italy, tel. 996096421635

"Challenge of the Chip" exhibition

There can"t be many western industrialized
persons to whom the "chip" is a total myspersons to whom the "chip" is a total mys-
tery, but the few to whom it is would do themselves a favour if they were to go along
to the Science Musuem's "Challenge of the to the Science Musuem's "Challenge of the
Chip" exhibition, which opened in late February and c
December 1980 .
In spite of a variety of adjectives used to In spite of a variety of adjectives used to
describe the exhibition, and aspate of journal
reports which did little reports which did little more than precis the
official booklet, it is one of the most effective official booklet, , it is one of the most effective
displays the museum has staged; as a history
of the development of modern microelecdisplays the museum has staged; as a history
of the development of modern microelec.
tronics it is highly successful, dodging about tronics it is highly successful, dodging about
from basic materials and fabrication methods to applications in a surprisingly unstrictured fashion. Some of the conceptual illustrations are particularly sharp, such as, in an early
exhibit, where the seemingly paradoxical xhibit, where the seemingly paradoxica
nature of semiconducting materials is outlined, i.e. that heating causes an
improvement in conduction in semiconduc improvement in conduction in semiconduc-
tors, the diametrically opposite effect to that tors, the diametrically opposite effect to
observed in a conventional conductor. The major area of concentration is of
course that of computing in its many forms, course that of computing in its many forms,
from sophisticated medical equipment and military radar applications to the multitu
of toys and games based on the chip. All the exhibits do not flash lights. or count
or converse with human beings, although or converse with human beings, although
those that do have been the best occupied. The Dept. of Industry's exhibit, a small hall
set aside for posters of MAP - initials not set aside for posters of MAP - initials not
explained - was totally empty for over 20 explained - was totally empty for over 20
minutes while hordes of children gleefully punched buttons and re-programmed things alongside.
Kiddies, Kiddies, it seems, are one of the major
hazards of the exhibition business if the opinions of one or two of the "keepers" are
anything to go by "Too many ef the little anything to go by. "Too many of the little
demons all at once, that's the worst of the school holidays," said one of them. Visiting the exhibition during term time might be the quieter answer therefore, although this pre-
sumes that coach-loads will not occasionally arrive, press-ganged into the trip by avid
science teachers science teachers.
It's all great fun though, and very infor-
mative, leading right through from the devemative, leading right through from the deve-
lopment of the first point-contact transistor
to the "la
systems.
systemse elements were a little silly (but
Some
forgiver forgivable) such as that showing applica-
tions of the chip for "sensing" tions of the chip for "sensing" processes in
rather trivial areas on the family car-oil and petrol level sensing, o.k., but sidelight
checking by photoelectric means? More checking by photoelectric means? More
sensors needed to check the checking l.e.d.
which in turn checks on the state of another sensors needed to check the check of another
which it turn checks on the state of
checking device always assumg that your checking device, always assuming that your
1.e.ds are reliable and you don't come to the conclusion that a length of optical fibre, carried from sidelights etc. to the dashboard
is all that's needed for instant feedback to the human optical system
the human optical system."
The relatively "perfect" actions of microcomputers were thrown into sharp relief by the apparent incapacity of the technicians
who must surely have set the exhis who must surely have set the exhibits up to
ensure good results from the video monitors ensure good results from the video monitors
dotted around the showcases. In one batch of
six six, two were suffering from ballooning (presumabily at the top of the screen. At $£ 1.65$, the official booklet ${ }^{\text {is }}$ being crammed with excellent illustrations and only really falling short in the rather
wooden style in which it is written and the single hole in its claim, common to the handbook and the exhibition, to show how
"microelectronics will affect your future," "microelectronics will affect your future."
There is no direct information or comment on either the more intense social changes or possible shifts in employment in the future as
a result of "chip activity" However, if one of its more staggering "facts" is any sort of indicator, that the pocket calculator gives us as much com-
puting power as would have cost $£ 50,000$ only twenty years ago, then maybe the author's sharp intake of breath at this self-revelation prevented further literary effort on the sub-
ject.

Microprocessor competition

To be fair, he couldn't really have known about, for example, the results of the recent
British Microprocessor Competition, which was organized by the National Research Development Council (NRDC) in collabora-
tion with the National Computing Centre

(NCC). The first prize in category 1 (working modelss of
Ltd, of Egham, Surrey, for their design for a portable erain moisture meter (ssee photo).
This is adaptable for other commodities such This is adaptable for other commodities such
as rice or seeds and features calibration data as rice or seeds and features calibration data
for several varieties of crop, located in a single e.p.r.o.m., using a computer language
called FORTH. called FORTH.
Operation is by means of only two pushbutons and an l.c... unit, and the complete
program roution program routine can be stepped through by
an untrained an untrained operator. The judges considered this design to be of value for agricultural
purposes for both developing and advanced economies.
The secon
The second prize of $£ 5,000$ was won by a
team from the Ieam from the University of Manchester (UMIST) Department and Technology gineering. The interactive programming system for lathes permits the operator to "conthat the market poctential for small machine shops is substantial, if the right company can
be found to complete development of the design.
The T
The Truestock stock control system won for Grundy Terminals of Teddington, Middthis offers sophisticated techniques for use
te by untrained operators enabling, for example, a component or sub-assembly to be
instantly identified by pointing to it on an overlay drawing with a light pen. In the second category (ideas on paper),
MDB Electronics of Deptford, London, won the first prize of $£ 2,000$ for their design for a portable electrocardiograph machine. This
offers battery operation and facilities for offers battery operation and facilities for
on-the-spot print-out and analysis of heart activity. Once developed, there could be a
significant market for this type of instrument significant market for this type of instrument
in surgeries, ambulances and first aid posts, in surgeries, ambulances and first aid posts.
Second prize of $£ 1,000$ in this category was won by a private individual, Mr. C. Goss of St. Margaret's, Twickenham, for his electronic
aid for the speech-impaired. This is based on comparatively cheap speech synthesis chips with limited, but nevertheless useful
vocabularies. A hand-held device is used to enter abbreviated words into a microproces sor, which employs "ingenious" algorithm to produce complete sentences. The judges oresaw the development of a device which unobrusive and portable, at a price which
people with speech handicaps will be able to
afford. A special prize of $£ 500$ was awarded to the
Royal Grammar School, Newcastle-uponTyne, for its microprocessor-controlled theatre lighting systen

The moisture meter designed by Sinar Agritec Microprocessser Compe it thion Usitish 1802 m.p.s.ur, it corovidest calitibration
programs for 30 types of cerel programs for 30 types of cereal or 64
commodities in all, and has built-in elec commoitites in all, and has built-in electronic
weight
corretance and automatic temperature cirrection. TTe commodity being tested acts
as a dielectric in a capacitance method of as a dielectric in a capacitance method of
moisture measurement. The makers founded their company in 1978 on the principle that microprocessors should be aeplied not only to
fast-profit consumer product but also to fast-profit tonsumer products but also to
ultra-practical devices to help increase the quality and consistency of food produce. (Sinar
is an Indonesian word meaning radiant light.)

WIRELESS WORLD MAY 1980

Richard Kirby at conference on spectrum conservation

The keynote address at a conference or-
ganized by the IEE on the subject of "Radio ganized by the IEE on the subject of "Radio
Spectrum Conservation Techniques", to be hect at the IEE headquarters from 7 to 9 July
hel 1980, will be given by Richard Kirby, Director
of the International Radio Consultative of the International Radio Consultative
Committee (CCIR), to which body the ITU looks for technical guidance on radio. His main subject will be the role of tech-
nology in coping with the more intensive frequency sharing arrangements resulting from WARC 79. General IEE interest in the subject dates from 1976, when the Electronics Divisional Board set up a special
committee to investigate the many aspects of radio spectrum conservation. The idea for
this year's conference arose from the comthis year's conference arose from the com-
mittee's discussions. Response to the call for papers has been
good and topics for discussion include alternatives to the use of radio, modulation echniques for reducing the bandwidth of
transmitted signals, methods of processing of information, aerial designs to limit wasteful
indiation, techniques for radiation, techniques for reducing inter-
ference, computer-aided techniques for spectrum planning and management and methods of confirming the radio energy level tion. For further information contact the IEE, For further information conta
Savoy Place, London WC2R 0BL.

Andrew Corbyn, designer of the pulse induction metal detector described in our March and Aprin
issues, explains a point about the prototype to Marie Tracer Chaiman of Pulse Induction Ltd oo ssues, explains a point about the prototype to Marie Tracey, chairman of Pulse Induction Ltd of
Yateley, Surrey, which has an interest in the patent application: Andrew, 35 , is a chartered engin Yateley, Surrey, which has an interest in the patent application. Andrew, 35, is a chartered engineer
with \mathbf{y}.egrees in mining engineering and geophysics from Imperial College. Apart from his research in rock mechanincs, potential field theory and statisticicl evaluation of mineral deposits, he has worked as a teacher, mining engineer, computer programmer and plumber. He has designed large metal
detectors for searching for gold in Western Australia. Marie, together with her husband elect engineer Lee searching for gold in Western Australia. Marie, together with her husband, electron Induction Ltd in 1972. She has done business in metal detecting
ent engineer Lee fracy, formed Pulse induction Lid in 1972. She has done business in metal detecting
with mititary forces in various parts of the world and her visits to remote spots have included travel on
a camel across deserts in Libya and Egyot. She is an expert shot with "cowbov" type hand gns with a camel across deserts in Libya and Egypt. She is an expert shot with "cowboy" type hand guns, with
which she has given demonstrations, and has also worked as an artist's model. Her company which she has given demonstrations, and has also worked as an artist's model
part of the Kay Organisation, which includes Lansing Bagnall fork lift trucks.

GLC document, largely favourable

 to c.b., seeks public responseA consultative document, recently issued by
the GLC, outlines the main details of the citizens' band debate and urges a strong public response to support the council's
"belief in the freedom "belief in the freedom of individuals to take
advantage of modern technology in their work and recreation, subject only to this freedom not interfering in an unacceptable
way with the freedom and rights of others." way with the freedom and rights of others.'
The document points out the social and commercial benefits of c.b. by reference to the USA, where it is possible to meals in advance, give warning of traffic jams or accidents or to provide back-up facilities for the emergency services. It disabled and refers to cases such as the elderly, who may be vulnerable to sudden illness or physical assaults while in their
homes, or the invaluable nature of c.b. to homes, or the invaluable nature of c.b. to a
disabled driver whose car may have broken down and who may be incapable of walking a telephone.
Possible disa
Possible disadvantages of c.b. are also
onsidered in the document such as its by the criminal fraternity in co-ordinating utweighed by virtue of the cact that well be outweighed by virtue of the fact that anyone
tuned to the transmission frequency would
be warned of the plan) or obscene language
broadcasts. Furthermore, the point is made broadcasts. Furthermore, the point is mad
that illegal c.b. activity is fairly widespread and criminal acts may be planned whether or not the service is legalized. The "pro-c.b.
obby argues that criminal activities would obby argues that criminal activities woul of the system, especially if legislation on c.b.
on ets included a compulsory identification ode signal. Balancing this would be the
problem that manpower would be required to regulate the service, which does not fir with current "trimming down" of public service departments through cuts in governmen by the government after an official stattemen on 6 December 1979 that the really strong
argument was one based upon personal freedom, although the major problem was that of the selection of a suitable frequency band. Another important feature of the
frequencies which could be used for c.b. is frequencies which could be used for c.b. is
their relationship with sets already manufactured in the USA and Japan and, according to this document, stockpiled in
this country ready for sale if c.b. is legalized. Most of these sets (about 100,000) are fo operation in the 27 MHz band, and there is common ground between the advocates o
c.b. and the government that this frequency
band is unsuitable and undesirable for the
purpose. purpose.
"This band ... directly threatens the users of hospital and other paging systems and the
activities of model control enthusiasts. In activities of model control enthusiasts. In
addition, it is understood that harmonics of addition, it is understood that harmonics of
transmissions on this band can interfere with broadcasting, the emergency services, old
people's alarm systems and aircraft compeople's alarm systems and aircraft com-
munications. Signals at this frequency also munications. Signals at this frequency ass
have a longer range than required... "Estimates have been made that there
could be a requirement of between 6 and 8 could be a requirement of between 6 and 8
million sets if c.b. were to be legalized in this country. A potentially large new market could thus be created for British firms, particularly if the controls imposed on band,
modulation and set specification were such modulation and set specification were such
that all manufacturers, overseas as well as at home, were starting from a new base in the esign of the product. This would includ type-approved equipment having to perform
accurately to the frequency chosen and the ysstem capable of extension to accommodate possibly) data transmission and station
oding to identify the transmitter coding to identify the transmitter.
"The government's clear intention to allocate a frequencyment other than intention to allo- 27 MHz band would remove an advantage currently held activity in that band and their sets are produced accordingly."

Comments and views on the issue in
general should be sent before June 4th

The Director-General (DG/PR), Greater London Council, The County Hall, London
SE1 7PB.

Periphonic sound

First public demonstration of periphony at AES convention

Back in 1970 Michael Gerzon, a mathematical researcher at the University of Oxford, was experimenting with
tetrahedral ${ }^{*}$ recording. Four almosttetrahedral ${ }^{*}$ recording. Four almost-
coincident microphones were angled for coincident microphones were angled for
spherical sound pickup, with playback over four loudspeakers in a tetrahedral array. Microphone angles were deter-
mined, matrix co-efficients calculated mined, matrix co-efficients calculated and the discovery made that there was redundancy in the four channels and
the minimum number of non-redundant channels was three. And it worked. Not perfectly, but well enough for him to remark two years later: "Those who have had the opportunity of hearing
periphony at its best can have no doubt that the height effect is important in the reproduction of sound and in the enjoyment of music.
Now, a decade later, the first public
demonstrations have taken place using demonstrations have taken place using
a recently-developed periphonic decoder. Until now only ambisonic equipment for horizontal surround sound has been available but the general theory is just as app
of height.
There were not many who had heard periphony then; there can't be that
many more now, though the NRDC. many more now, though the NRDC-
sponsored Ambisonic partnership did a sponsored Ambisonic partnership did a
sterling job at the recent London Audio Engineering Society Convention with frequent six-at-a-time demonstrations
*A theory of spin spherical harmonics, a
three-dimensional equivalent of circular three-dimensional equivalent of circular
harmonics with analogy to quantum theory, showed that the early tetrahedral array was
shas
only only one member of an hierarchial family
which Michael Gerzon termed periphonic
this work, some aspects of which were summarized in a lecture by Michael Gerzon at the convention
To oversimplify this, imagine vectors drawn from the centre of a four-speaker array with directions pointing toward
each speaker and whose length is proeach speaker and whose length is pro-
portional to the amount of sound emitted from each speaker. At low frequencies, below 700 Hz , where localization depends on inter-aural phase differencies, make the length of each vector
proportional to the amplitude of sound emitted and add their magnitudes to give a total amplitude. Also add vectorially, which gives a localization according to the Makita theory (which is that direction to which the head turns
to give zero phase difference). Now to give zero phase difference). Now
when the head points in another direction the perceived direction generally differs, and to stabilize the image position requires that the magnitude of the resultant vector is the same as the total
amplitude of sound from the loudspeakers. This ratio is called the vector magnitude \mathbf{r}_{v} (\mathbf{r} comes from real, v from velocity) and should ideally be unity in eproduced sound, as it is with a liv ound source.
At high frequencies, where localiza
tion is by inter-aural intensity dif ferences, make the length of each vec tor proportional to the energy of sound emitted, and again add the magnitudes to give a total energy. Adding vec the energy-vector theory (which is that direction to which the head turns to give zero intensity difference). Then, is argued, to give good image stability the vector magnitude r_{E}, i.e. the ratio o should be as close to unity as possible (This ratio would be unity for a rea ound source, but it has been shown hat this value cannot be attained whe As well as meeting these two criteria good decoder design must get both localizations correct for all frequencies and in all directions. Though it wasn'

continued on page 75

 First periphonic decoder built by theNRDC-sponsored Ambisonic partnership has controls that allow a variey

WIRELESS WORLD, MAY 1980

THE INTELLIGENT PLUG Having been involved in power line carrier
design for some time I particularly enjoyed design for some time I particularly enjoyed
the article "The Intelligent Plug" in the Dhe article "The Intelligent Plugg in the
December 1979 issue. The techniques de-
ccribed for the remote control of domestic scribed for the remoote control of domestic
appliances are straightforward and practical. appliances are straightforward and practical.
Some time ago I entered into a developSome time ago 1 entered into a develop-
ment programme for a full duplex power line
carrier intercom in conjunction with carrier intercom in conjunction with
Semiconductor Circuits Inc. of Haverhill, Massachusetts. This work culminated
recently with the production of a number of prototype systems, working in pairs so that a person in one room could simultaneously
talk and listen to another in a separate rol without having to operate any controls. We even went exotic with the addition of telephone adapters to convert the intercoms
into loudspeaking telephones and demon strated operation with both impulse and touch tone dials.
From extensive tests on these units by engineers and enthusiastic marketing per
sonnel, we have been forced to acknowledge that power lines provide less than ideal ransmission and have a decidedly unpre-
dictable nature. On this side of the Atlantic our lines are 115 volt but have similar impedance characteristics to the one shown in Fig. 2 of your article. However, these
characteristics vary from circuit to circuit house to house, office to office. The average impedance falls from approximately 20 ohms tises, depending on the circuit to and the ohms at 400 kHz . We have stayed clear of higher frequencies (even though they are number of powerful mecause of the larg stations around each city. Superimposed on hese impedance trends are troughs down to two or three ohms and peaks of 70 to 120
ohms. Such resonances are accompanied by eros in transmission spectra that wreaked havoc with our frequency selection plans, hese transmission 'holes' are produced by
reactances in appliances connected to the circuit and to resonances in local voltage dropping transformers. We found that an instant on' tv set completely wiped out a
channel centred on 300 kHz . Incidentally, the line loss here is greater than you show, while a good circuit will have 20 dB loss; a more offices this rises to over 50dB. Noise is just as unpredictable, being either non-existent or
spikes of a few volts. It is worse at lower
frequencies and appears to frequencies and appears
tially as frequency rises.
Commercial manufacturers of power line carrier intercoms such as Fanon avoi
transmission band irregularity problems providing alternative working frequencies: if one doesn't work well, the other one should. This is easy in a simplex system but difficult
when working full duplex since sifting when working full duplex since shiftin
frequencies necessitates switching transmit receive filters and can be very expensive. would imagine that working simplex or half
duplex with 'The Intelligent Plut' is no less duplex with 'The Intelligent Plut' is no less
hazardous since the absence of signal due to a transmission hole is not obvious to an
unskilled oberal tue to nskilled operator.
One major problem not mentioned in the
article is that once satisfactory transmission
has been established throughout the required house there is also a fair size signal heading other nearby houses, an effect that is com-
mercially exploited by intercom manufacturers; you can put one in your baby's room while you go out on the town and the other in your neighbour's house. Transmission is
generally good enough for this 'baby alarm' mode of operation. When voice transmissions are carried over the power line the
effect is to automatically 'bug' your hous Even worse, the installation of a number of similar systems within a neighbourhood ensures that each will interfere with the receive anything.
Experience with our own full duplex sysems forced us to conclude that unless the in some way they do not provide a sufficiently predictable link. All of the problems can be simply overcome by installing block ing filters, either in the form of adapter plug appliances or to block out-of-house trans mission and reception by clipping filters around the cables entering the house.
The challenge now is to evolve acce ine conditioning adapters and educate the general public so that this most economical
signal transmission medium can come into its own for all kinds of application.
Lewis Illingworth
Beaconsfield
Quebec, Canada

As an electrical engineer employed by the supply industry, I read, with interest, the Witten on the use of household wiring for data transmission (December 1979). Howgiven in the article are not entirely correc given in the article are not entirely correct
and this may have an effect on the operation f such a data transmitting system. In urban situations, it is true that all three very third house is connected on the tha hase. It has been common for many years to oop two houses together on the same phase interference. More importantly, the diagran of a distribution substation is incorrect. It connected as in the accompanying diagram.

The importance of the neutral to earth connection to the Intelligent Plug cannot be under-estimated. This situation is further
confused by the use of p.m.e. (protective multiple earthing - not phase multiple ear thing mentioned by yourself). The introduction of p.m.e. has led to the neutral and on the distribution system to give a number of parallel current paths, ensuring low neutral-earth impedance. The use of p.m.e.
had led to the use of combined neautral-earth had led to the use of combined neautral-eart share the same conductor. In this case, I do not see how the Intelligent Plug, as de scribed, could function.
Signalling, using the live/neutral pair
, would be feasible, but because of the danger nvolved and possible damage to faulty interested to know what the 20 metre section of mains wire, that the authors investigated, was connected to and what effect the many household wiring have on the impedance of it at frequencies in excess of 30 kHz . Before the system could be used commercially, some
more detailed experiments on the character istics of household wiring, and the effects on the distribution network that such a communication
essential.
A. J. Skinner
A.J. Skinner
Edmonton

London N9

MICROELECTRONICS

AND THE THIRD WORLD ith, reference to "Trickle, trickle little sue, I would have liked to commend you for pointing out the deficiencies of the now diely discredited 'trickle-down' theory of orld economic development had you not accumulation" using high technology, been advocating the very same thing, albeit in a watered down version. Unfortunately the
arithmetic simply does not work The the high technology workplace, and the market for the goods produced in a world wourded take hundreds of of years to dimininsh ever, by these means.
In the battle against poverty, i.e. in seeting the basic needs of the poor, we must swallow some ideological pride and realize
that the real 'capital' in the development equation lies in the vast waste of human potential that poverty implises. Generations
of poverty bring about fatalism and stagnaof poverty bring about fatalism and stagna-
tion, but let a poor people realise the things tion, but let a poor people realise the things
that can be done if they work together towards a common goal, and are free of those who are doing very nicely out of the status
quo, and this vast human potential will be quo, and this vast human potential will be
unlocked. Basic needs will be met in tens, not
hundreds of years. hundreds of years. The 'money' capital
needed, e.g. irrigation pipes, cement, to fuel needed, e.g. irrigation pipes, cement, to fue
this process is surprisingly small bu obviously the political problems are corres-
pondingly large. pondingly large.
Once this pro
solidate the gains made microprocessor
based production is highly relevant and based production is highly relevant and
should be used. Alternative technology, of eourse, is by its nature primarily for meeting local basic needs and was never really in
tended for developing export markets. I ended for developing export markets. I see a two-way education process as being
necessary. The Third World may not know nuch of the possibilities of microelectronics and people in the West may not know much
of the Third World. As its role in the first part would encourage Wireless World, with it orld-wide readership, to give special atten tion to the use of microeelectronics in the
Third World, and for the second part I can only refer readers to magazines such as the New Internationalist.
N. W. P. Payne
Danbury
Dannur
Connec
USA

USH-PULL AMPLIFIERS On page 74 of your January 1980 issue is amplifier. When two generators feed a single load the
uestion of load sharing is liable to arise. As in well known, when the generators are in parallel it is necessary for them to have a no
too low internal resistance (or regulation) to cope with inevitable differences in e.m.f., the
Generator 1 l

Generator	I_{2}	I_{1}
Generotor 2	V_{1}	$V_{\text {out }}$

here. If the internal resistance is too low the here. II the internal resistance is too low the
output characteristics of the two generators are almost horizontal and the distance be-
tween points A and B can become large. Indeed it is quite possible for one of the points to be to the left of the vertical axis, which means that one generator is supplying cur-
rent not only to the load but also into the other generator. Clearly there is magnifica tion of inequalities.
In an electronic In an electronic amplifier we can give to
the two generators (the two halves. of the the two generators (the two halves. of the
output stage) any internal resistance, and the ideal arrangement for good load sharing is
two generators with infinite two generators with infinite internal resist-
ance (i.e. current generators). There is then no magnification of inequalities in the
no transconductances or inputs of the two sides
of the amplifier; and the combination can be of the amp required low output resistance in the usual way by feedback.
A good basis for such an arrangement, it seems to me, is the Peter Blomley amplifier
(February, March 1971 issues). This is class-B design; but the current-splitting stage can easily be changed to class A by putting
resistance between the emitters and intro resistance between the emitters and intro
ducing extra bias between the bases. And, o course, other changes will be needed - to resistances and to sizes of heat sinks - to
cope with the changed working conditions. cope with the changed working conditions.
The two sides of Mr Pollock's amplifier have low output resistance, partly because of
the emitter-follower connection and partly
ecause of the overall feedback on each side he parallel feedback chainss); and that ther is a serious load-sharing problem is shown b
the call for resistors matched to 0.1\%. A experienced engineer would, I think, have seen this unusually tight requirement
sign that he was not on the right path. I find it interesting to recall that one of the first published feedback-amplifier design
(the Wireless World (he Wireless World p-a amplifier, if my memory serves me correctly) had simila
parallel feedback paths. But in those days the moderate amount of feedback used reduced the output resistance to about only a half or a
third of the load resistance. Moreover there is nothing in electrical engineering as accurate,
as the ratios of the e.m.fs in the secondaries

of well-designed transformer. So ther of a well-designed transformer. So ther
would not in this amplifier be a serious would not in this amplifier be a serious
load-sharing problem. The arrangement o the output stage was, as far as I can my pre-war Wireless Worlds E. F. Good
Darlington

Darlington
Co. Durhan
TOWNSMAN AERIAL
Since the publication of my article the
"Townsman $2 \mathrm{~m} / 70 \mathrm{~cm}$ aerial" in the February issue, a few queries have arisen, mainly as a result of conversations over the air on the
2-metre and 70 centimetre amateur bands. 2-metre and 70 centimetre amateur bands
Further experience with the aerial since the article was written enables me to answer most of these, although the obvious one,
"Where can I obtain flat metal strip 1 cm wide?" must remain open at present.
The first question concerns a certain confusion about the tabular data. Column No. 1
is the data for the two-band $2 \mathrm{~m} / 70 \mathrm{~cm}$ aerial. Columns $2,3,4,5$ and 6 give details of single band "simple" models for 70 cm , and for indoor television reception.
In the two-band model, I can now be very
precise about the positioning of the cooking. precise about the positioning of the cooking-
foil suppression sleeve as a result of on-air
tests carried out recently since the com. tests carried out recently since the com-
missioning of more 70 cm repeater stations missioning of more 70 cm repeater stations
near my home. The centre of the sleeve
should be 3 inches (7 lim) should be 3 inches ($71 / 2 \mathrm{~cm}$) below the centre of the dipole element, and not exactly as
shown in the drawing, level with it. This shown in the drawing, level with it. This
makes its manner of operation rather obsc ure, but results show that this is the best
position.

Tests using a variety of different hook-up
wire for the hair-pin matching loop disclose
he fact (originally overlooked!) that thin wire with thin insulation bends into a tighter hair-pin than thick wire with thick insula tion, and that the influence of the metal of
the transformer strip is far greater with the hin wire than with the thick wire. The length hown is for thin wire with thin insulation; a possible minimum length for wire extracted
rom ten-amp mains flex would be in the region of 3 inches $(77 / 2 \mathrm{~cm})$, rather than the
five inches $(12.7 \mathrm{~cm})$ show The inches (12.7 cm) show.
The conductor wire is taped lightly The conductor wire is taped lightly along
the metal of the transformer until it flares away for $71 / 2$ inches $(19 \mathrm{~cm})$. The shape of the lare adjusts the matching rather critically ccurate adjustment and to maintain long erm stability, to brace this free section of the conductor wire with a strip of thin Formica 2 cm above the last strapping, for the purpose of fine-adjusting the rate of flare. With such a screw adjustment, v.s.w.w.r. can be brought unity with almost factory-test' rapidity.
The aerial is necessarily a compromise. It recommended that adjustment be made to be correct on 2 m , and some v.s.w.r.accepted
70 cm . This need not be worse than 1.5:1. I used plastic tubing coloured white. suspect that black coloured tubing ma it unsuitable for these purposes.
it unsuitable for these p
B. . P. P. Howlett, G3JAM
B. J. P. Howlett,
Wodford Green
Essex

IS 500kHz A GOOD DISTRESS FREQUENCY? It is quite common when using marine m.f. transmitters under certain circumstances to
experience considerable loss of radiated r.f. ower on medium frequency $405-525 \mathrm{kH}$
The effect is most pronounced with ver rough sea conditions in gales or storms, the radiated power dropping off on the main
ransmitter from its normal 7 amps rf. down to approximately 2 amps, or under certain conditions less. In extreme cases it has been known for the radio operator to be unable to power the transmitter on m.f. due to the
transmitter tripping off. H.F. is not affected to the same extent.
Similar loss of $r f$
Similar loss of r.f. radiated power was also gency transmitter during calm conditions but with a high temperature and high humidity present. Radiated power on m.f.
amps r.f. amps r.f.
In gales or storms or when humidity is high, all the aerial insulators become satu rated with wet salt spray; this alone cause
considerable loss of radiated power on m.f. Probably, though, a greater loss of radiated the fact that in suc vessel and its antenna is saturated with salt roplets and spray which can extend to a considerable height above sea level (well
above the antenn height) This presents an extremely poor dielectric constant and means that one is attempting to operate an
m.f. transmitter into a load (antenna) which is almost immersed in a saline solution existing between the aerial and sea level. It is difficult or impossible to load the transmitter This is at a time when conditions. possibility that a vessel could get into diffi-
culties in heavy weather
necessary to transmit a distress call on 500
kHz . Under these possible to do so, or, if possible, it would be at much reduced power output. Should a vessel
in these circumstances be any distance from another station it could result in the call
gotrom
going unheard on going unheard on m.f. Perhaps this explains
why vessels have disappeared in heavy weather without a distress call being heard.
Does not this raise the question is 500 kHz Does not this raise the question: is 500 kHz
a suitable frequency for distress traffic working under these conditions?
A. K. Tunnah
Ardrossan

Ardrossan
South Australia
PRE-AMPLIFIER WITH
NO T.I.D
We all read very attentively the June 1979
Journal of the Audio which Mr Lipshitz has given so many examples of the errors in commercial pre-
amplifiers (even in "very expensive models") and his letter in your January 1980 issue is one more reminder. In 1978 we could not have known, unfortunately, about his article
of 1979. Further, the specification of the equalization network will be considered according to the circumstances. Unfortun-
ately, the question of the equalization netately, the question of the equalization net-
work is not the main work is not tre main point of my article
"Audio pre-ampifier with no t.i.d." in the
Ausust 1999 issue. August 1979 issue.
Firstly, the term "grossly in error" should
be put in context. Let's take into account the be put in context. Let's stake into account the
fact that the pre-amplifier is always followed
by fact that the pre-amplifier is always followed
by volume and tone controls, filters, loud-
speakers and a listenig speakers and a listening room. As far as is
known, these units distort the signals to a greater extent (in amplitude and phase). By the way, in my August 1979 article I pointed at the edges of the audio band, and I mentioned the possibility of modifying or com-
pletely replacing the equalization network pletely replacing the equalization network.
And for sure there is nothing in the article, And S Stravinsky's words, that has "crinally
usrived". Taking all this into account it
ard arrived". Taking all this into account it
doesn't seem reasonable to complain of the doesn't seem reasonable to complain of t then
RIAA network being "grossly in error". RIAA network being "grossly in error"
Postscript: Employing the classical eq valent network of the output circuit Tr_{1} we
have:

After the usual simplifications we have the equivalent network with a current generator:

For a long time we have had the origina an equalization networc; here, for example one of many possible version

It is clear from Lipshitz's letter and article It is clear from Lipshitz's letter and article $\mathrm{R}_{7,}, \mathrm{R}_{8}, \mathrm{R}_{9}, \mathrm{R}_{10}, \mathrm{C}_{5}, \mathrm{C}_{6}$ are the components
"grossly in error"). (It is jis just $\mathrm{R}_{8}, \mathrm{R}_{9}, \mathrm{R}_{10}, \mathrm{C}_{5}, \mathrm{C}_{6}$ grossly in error". (It is just $R_{8}, R_{8}, R_{10}, C_{5}, C_{6}$
that are replaced in measurements by the 240-ohm resistor.)
If we take into account that R_{5} of the
following stage has some effect following stage has some effect on the
equalization network and there is a possible equalization of high frequencies by the input
reduction
filter of the preser filter of the preamplifier (moving coil), as
well as attentuation of low frequences wther following isolating capacitors (without
other other following isolating capacitors (without
putting on additional stages, etc.) we inevit-
aly have to abat has been achieved.
The circuit may also be used this way:

The resistor R_{7} is used only for "equalizing" Y. Miloslauskij

Institute of Constructional Physics
Moscow
Moscow, USSR
'TRIVIAL" AMPLIFIER DESIGNS
I was slightly perturbed by Mr B. J. Duncan's etter in the January 1980 issue. Since he ha radically altered the design of my pre-
amplifier by removing the discrete semicon-
ductors and introducing i.c. circuitry ductors and introducing i.c. circuitry, I
hardly think it is fair to carry on referring to, hardy think it is fair to carry on referring to take any responsibility for its performance or ack thereof.
I do agree that an unacceptable aura of
mysticism still seems to surround the mysticism still seems to surround the per-
formance of audio equipment. A great deal of
nonsense is still bein tal nonsense is still being talked abod about "musical"
capacitors, metal oxide resistors and so capacitors, metal oxide resistors, and so on,
although as far as I can tell the field is still wide open for the first brave man to stand up and explain how ears can register differences that not only escape the best test gear, but
are also unknown to electrical science. Presumably, given time and a complete lack of supporting evidence, such silliness will once
more become unfashionable. However, I do differ with Mr Duncan in his assessment of the worth of increasing amplifier refinement based on actual en-
gineering principles. If someone finds a way
reduce distortion in gineering principles. If someone finds a way
to reduce distortion in a given case from
0.005% to 0.004%, then surely the design
approach involved is worth reporting, even if
the current state of art in analogue magnetic recording renders such an improvement
largely academic. Also. I suggest that there is much satisfaction to be gathered in constructing a piece of equipment that will degrade the signals passing through it as available are of variable quality. I see no reason why amplifier designers of the audio chain have a lot of catching up to do.
do.
Douglas Sel
London E17

M.F. RECEPTION

I am pleased to note that Mr Schemel's recent article on loop aerials (July 1979), and my
own letter on m.f. broadcast (November 1978), are giving rise to some
(inta interest in this are
I should like to
letter (February 1980) concerning the use of long-wire aerials. I agree that the use image
rejection of domestic receivers. rejection of domestic receivers, typically no
better than $30-40 \mathrm{~dB}$ even after careful alignment, makes the untuned connection of a long-wire aerial of doubtful value. I also agree that in the majority of cases, loop of increasing signal pickup. But I ought to have made it clear that my original method of Mr Hill assumed.
Where practical considerations make the erection of a long-wire aerial an attractive method of coupling such an aerial to a ferrite-rod receiver was to use a surplus̆ ferrite rod aerial with a standard m.f.
winding, earth one end, and connect the winding, earth one end, and connect the
other to the long-wire via a 500 pF variable. Mounting this assembly in a small plastic box enables the amount of coupling, and the
phase of the additional signal, to be varied by physically moving the plastic enclosure with respect to the receiver. Depending on the ength of the aeria be necessary to achieve the desired tuning range.
Not only does this offer similar dis-
crimination ference to that obtained with a resonant loop, but the substantially omnidirectional pickup vertical whip) means that careful juxtaposition of receiver and coupler can produce a cardioid-type pickup pattern, which can be field strengths are quite high, and gain is not as important as directivity. During daylight ours, the omnidirectional pickup of a longgeneral band-scan.
I also note that Mr Hill uses a low-pass filter in the audio circuitry of his receiver. I
agree that a sharp cut-of above 5 kHz is extremely advantageous for reception of similarly band-limited transmissions, but surely the notch should be at 9 kHz , not eight. BBC and the IBA transmit a response which is substantially flat up to 5 kHz , and then rolls off to -40 dB at around 7.5 kHz , and at least
-50 dB at 9 kHz . A good filter for reception should be at least as steep.
Inote that recent trends in consumer design do not appear to include much, if
anything, in the way of audio treatment after
the detector. Instead, the latest designs rely
on a narrow block filter as the major part of
the i.f. selectivity, relying on accurate (and usually manual) tuning to provide the necessary h.f. attenuation. The block filters
popularly used have a nose bandwidth of popularly used have a nose bandwidth of
little more than 6 kHz , presumably a sacrifice willingly yielded in order to improve necessary budget. This means, however, that the recovered audio respons, halls shar, thaty, and to my mind undesirably, above 3 kHz or so, a
precise. precise.
Given that the brief of consumer audio
equipment is generally to provide the best equipment is generally to provide the best
possible reception of local transmissions where even at night the wanted signal may be presumed to be at least as strong if not stronger than anything on the adjacent channels, I would suggest that a better
approach would be to employ a much wider block filter, with a -3 dB bandwidth of around 10 kHz , and then to eliminate
adjacent-channel whistles and chatter' by means of a steep, and preferably switchable, low-pass filter with a cut-off. frequency between 4.5 and 5 kHz . The use of
such a filter also has the eliminating high-frequency distortion products arising from the detection process. Finally, Ishould ike to point out that there wave signal of usable strength in some parts of the country, which radiate a much wider tandard within the UK and much of Eurow They are, are the time of writing, RTE Radio 2 on 612 kHz , which can be received quite well Southern Scotland and Northern Ireland and the pirate station Radio Caroline on 963 kHz , which can be heard in South-East England. It is, strictly speaking, illegal to listen to the
atter, and I mention it only out of technical curiosity
Norman McLeod
Norman McLead
Hove
East Sussex

MILLIBEL IS RUBBISH I have a little sympathy for Mr Duncan's cri de coeur (January letters) over yet another
super hi-fi amplifier troject (Otober 1979). super hi-fi amplifier project (October 1979).
Too often designers are carried away by Too often designers are carried away by he high accuracy of a modern calculator Consistently overlooked are the realitities of
the situation - that the amlifer is he situation - that the amplifier is but one
dement in a very long chain of accumulating mperfections and, in a domestic system particularly, the ultimate fidelity overall will However, my spleen feels distended by letter in the March issue with a suggestion of such idiocy that I had to check the cover to make sure that it wasn't an issue a month
early. But no, the writer was deadly serious and dangerously literate with it. Can it really be suggested that again, for one small elemperative that any amplituce/frequency deviations be maintained within an accuracy of 0.05 dB ? (I assume that this is the tota regard the proposition as rubbish, pure and simple - and I say it as an engineer of 30 years' experience and accustomed to workng to tolerances far tighter than thos
ultenty practised in the hi-fi industry. For a start, how in heaven's name can one
guarantee a consistency considerably better
than this outside the pre-amplifier - in the programme sources, for example, which will
be used for the subjective be used for the subjective tests? Once before,
when challenging a myth when challenging a myth being propagated
by hi-fi commentators of questionable ability, I offered a sum of money to any charity if the spurious arguments being put
forward could be proved. My bait was never taken and it remained for others subsequently to demolish the false gods. I will make this time. ante this time.
Prove this
independent listenous proposition with an tifically controlled set of conditions. If the panel are able to detect with statistically
significant significant accuracy a frequency/amplitude
deviation at some trum of 0.05 dB on a veed point in the specmaterial, I will donate $£ 100$ of any charity
named named by whoever takes up my challenge. I have my charity ready if the test fails, to position's supporter
Meanwhile, may I conclude by expressing my disappointment that a magazine of provide a platform for cranky views. These are more proper to the hi-fic comics. Reg Williamson
Norwich

NATIONAL MUSEUM OF

 BROADCASTINGAs a BBC Engineer at Washford, I was inter-
ested to read about the demise of the mans Park transmitters. The Washford, somerset, regional transmitter was in fact 46 years of service at the end of October, after trical efficiency and maintenance effort, it had to go, but its destruction breaks another link. For the early days of broadcasting. For the present, however, the transmitter
itself remains intact. Since the prime movers and rotating machinery have gone, it can can never be used again, but it would provide a a
unique centrepiece for any museum. The main unique centrepiece for any museum. The main
transmitter hall and office block will shortly become surplus to the BBC's requirements what an ideal opportunity to provide a show-
case for the Corporation's achievements! The case for the Corporation's achievements! The
IBA already have a broadcasting gallery in ondon (displaying BBC history!): once a ford, it would be relatively easy to mount
form ensel smaller exhibitions at major BBC centres in London and elsewhere. Public interest. bounds, as various "open days" over the years will verify.
The BBC
would be necessary to set up some form of rust, financiallyary independent, but fliaising losely with all departments of the Corporation to provide an interesting and financially viable museum. Historic items abound, hidden,
within the BBC. Here is the opportunity to wilhin the BBC. Here is the opportunity to
allow everyone to see them. During last summer, the Corporation were advertising two "Doctor Who" exhibitions on non-BBC sites Surely this was not necessary. uilding, in a majoric and impressive ossibility of free advertising ay area, the such an enterprise cannot fail. This is a golden, opportunity, probably the final opportunity, to create a national museum of broadcasting.
J. E. Butterworth create a national
J. . . Butterworth
Blue Anchor Blue Ancho
Somerset

A POOR JOKE

In your January issue J. Greenwood lodged less World to include controversial political less World to inclue surntroversial political
matters. Though I suspect I may have a ittle more sympathy with some of the views
expressed (thoug expressed (though not in Feb. 1980) I equally
consider that $W . W$ is the consider that $W . W$. is the wrong place to
expess them. One is subjected to so much political discussion in so many places, and looks to W.W. as a unique source of technical
information understood limits. Having stood up to be counted at this end
of W.W. I now turn to the other to express of W.W. I now turn to the other to express
the hope that a certain five words by Mixer are no more than a slip and not signs of a trend. A second point of my agreement with Mr Greenwood is that humour is a fitting
ingredient of W.W. Even though myself of Aberdonian grandparents, I was able to pass Aberdonian grandparents, was able to pass
over Mixer's inevitable linkage of Scotland
with northern mists and haggis with no more with northern mists and haggis with no more
than a slight wince, but I did seriously deplore his gratuitous addition 'of BL cars disintegrating' as one of the noises over
which a certain Klaxon hern which a certain Klaxon horn could be heard.
For one thing, it is a cheap and in this context meaningless jibe of the same order as the perennial mother-in-law jokes - hardly up to
$W . W$. standard. But the serious aspect is that $W . W$. standard. But the serious aspect is that
it is one more example of the British disease of self-denigreation, which of ultimately deters people from buying cars that have been made
to look a joke. Does Mixer know that BI o look a joke. Does Mixer know that BL
vehicles are used exclusively for their fleets of cars and lorries by Rolls-Royce, who estified in The Times that they find them very satisfactory?
In the same w
problem because our children are preconditioned by silly jokers to find maths Incomprehensible.
If I look like becoming political myself, it
jus shows just shows what happens when such matters
are brought into W.W?! M. G Scroght into W.W

M. G. Scroggie Bexhill

Bexhill
Sussex
Mixer replies
Having been
Having been at the receiving end of many shafts of 'humour' concerning my own nor hern origins, I am familiar with the "sligh
wince" that Mr Scroggie feels imel exhibit at the mention of haggis, cabers an northern. mists. I see no reason why h
should be spared. should be spared
On the subject
of BL cars and Mr Sche precarious cohesio cliche, the "British disge"s own inevitable most certainly not meaningeless the jibe was o comment on the use of BL vehicles by Rolls Royce, but I can say that if I had not persistently and recklessly chosen to drive a succession of unreliable BL cars myself,

Maxwell's equations revisited

commenting on "Maxwell's equat letters visited" by Ivor Catt in the March issue There are too many to be published individu. ully, so the main points will be selected and
presented collectively, accompanied by a presented collectively, ac
joint reply from the author.

Audio spectrum analyser

Narrow bandwidth without expensive filters

by Peter Hiscocks, Ryerson Polytechnical Institute, Toronto

This instrument is used with an oscilloscope to form an audio oscilloscope to form an audio analyser at a cost more in keeping with an amateur experimenter's budget than a commercial design. Th synchrodyne technique is used to avoid the need for expensive narrow-band filters. Dynamic range is

The conventional mode of operation of commercial spectrum analysers entails the use of an extremely narrow-band
filter, a circuit which is too complex and expensive to be attractive to the home constructor or to schools. Conse quently, the design described in this frequency frequency changing which neatly
avoids the difficulty. This type of analyser is intended to investigate un varying signals, which means that it is not suitable for analysing music or
speech waveforms. speech waveforms.
fisplays obtained with the instrument The trace in Fig. 1 is the spectrum of a 1 kHz square wave, while that in Fig. 2 is of a 1 kHz sine wave, showing 3rd and
5 th harmonics. The small response a 5th harmonics. The small responses at a in each photograph are spurious products resulting from the method of analysis chosen: they do not normally cause trouble, since they are lower in display axes are linear Since the instrument cated to make, it cannot be recommended for a first attempt: constructors will need a distal signal generator.

Basic principle
The block diagram of a conventional spectrum analyser is shown in Fig. 3 . between 100 and 150 kHz , when the sum of the l.o. and input frequencies will be translated into the passband of the analysis filter. However, the construcmonics some 60 dB apart in amplitude a few Hertz apart at 150 kHz , poses enormous problems for the home constructor. For example, the Hewlett-Packard crystal resonators ${ }^{1}$ the crystals feing matched for temperature drift.

Fig. 1 and 2 show typical responses obtained with the analyser. Fig. 1 shows the is the analysis of a square wave, showing odd harmonics up to the 11 th, while in Fig. 2 Bandwidth was 200 H

Fig. 3. Block diagram of a conventional spectrum analyser. The 150 kHz bandpass filter Fig. 3. Bhock dagram of a conventional spectrum analyser. The 150 kHz bandpass filter required performance.

Fig. 4. Method used in this design, in which the filter takes the form of a low-pass

Fortunately, M. G. Scroggie ${ }^{2}$ has
suggested an alternative technique suggested an alternative technique
based on the synchrodyne radio based on the synchrodyne radio
receiver. Figure 4 shows a block diagram of this analyser. The tunable local oscillator sweeps over the range to be analysed, and the low-pass filter passes signals that are close to a zero
beat between the input signal and the analysis signal. This process may be regarded as a translation of the lowpass filter to the frequency of the local oscillator, together with a mirroring of
the low-pass filter characteristics the low-pass filter characteristics
around the local oscillator frequency as shown in Fig. 5(a). The result is effec-
tively a band-pass filter, with its centre frequency at the setting of the local twice the cutof fandwidh equal to pass filter. The design of the analysis filter thus becomes an exercise in lowpass filter design. In the prototype, a four pole Sallen and Key filter was used, with cutoff frequencies between 5 and
250 Hertz. For thos ques of correlation analysis, the analyser may be regarded as a type of cross
correlator ${ }^{3}$. The local oscillator sine correlator ${ }^{3}$. The local oscillator sine
wave is cross correlated against the input signal; the low-pass filter is an

Fig. 5. Frequency response of the analyser. At (a) is shown the low-pass characteristic translated in frequency to that of the local oscillator, while retaining the same bandwidth. The notches shown in the response at (b) are the result of capacitance
coupling.

Fig. 6. A typical analysis. The fundamental is at 2.98 kHz , its second harmonic being clearly shown at 5.96 kHz . The spurious products are all below the frequency of the
fundamental.
averaging device which produces a signal whenever a match is found bet ween the input sine wave and that of the local oscillator.
The local oscil
much wider range in proportion to its centre frequency than in a conventional spectrum analyser. In this design, a sweep range between 100 Hz and 16 kHz
was achieved without undue difficulty. The range may be moved by switching a local oscillator capacitor.
A particular advantage of this system is its ease in identifying the frequency of any particular harmonic: the analysis
frequency is equal to the local-oscillator frequency is equal to the local-oscillator
frequency. In this design, a simple digital readout of analysis frequency is provided.
Changes in analysis bandwidth in the low-pass filter have the effect of
changing the quiescent output voltage of the filter. The simplest solution to this problem is to capacitively couple the filter to the output of the mixer, even in the centre of the a nalyser's filter pass band shown in Fig. 5(b). This is a slight inconvenience in use, since the local oscillator must be slightly detuned from the harmonic frequency when reading amplitude. However, the notch does of a signal. The m
synchrodyne andy problem with the of the local oscillyser is that harmonics band of the analysis filter and show was on the display as false readings below the fundamental frequency of the input. There are two approaches to this problem. One, obviously, is to keep the distortion of the local oscillator as low design of a swept oscillator, however is to use a function generator, and the output of a function generator must be shaped in a diode network to produce a distortion of such a sine wave below one percent, particularly when this waveform is to be varied in frequency over a wide range.
The other approach is to learn to recognize and identify the spurious in Fig. 6, the analysis of a 2.98 kHz sine wave from a commercial function generator. The vertical axis has been onverted to a logarithmic scale by the thereby emphasizing low level distor tion products.
The spurious distortion products due to the analyser are labelled A, B, C and D on this graph. Notice that these all fall below the fundamental of the input monically related to the input signal. Spurious product A is created when the fifth harmonic of the spectrum analyser local oscillator beats with the
fundamental of the input signal fundamental of the input signal. Pro-
ducts B, C and D are similarily caused by the fourth, third and second harmonics of the local oscillator.

WIRELESS WORLD. MAY 1980

Fig. 7. Prototype analyser.

Fig. 8. Detailed block diagram of the instrument. Horizontal and vertical outputs are aken to the oscilloscope, and the local oscillator output is for use with an external counter or other test gear.

Fig. 9. Multiplier circuit.

The 595 kHz harmonic is the The 5.95 kHz harmonic is the second products do not appear below this harmonic because both it and the spurious products of the local oscillator are small in magnitude.
Fig. 7 and trum analyser is shown in Fig. 7 and its detailed block diagram in

Detailed circuit
description
Multiplier. A Motorola MC1495 is used Its maximum input signal should be limited to 8 V peak to peak to limit distortion in the multiplier. The RC networks on the inputs (910Ω in series
with 10 pF) lower the Q of the input with 10 pF) lower the Q of the input
leads and damp out any tendency to high frequency oscillation since the $\mathrm{MCl495}$ is capable of operation up to 10 MHz .
The $10 \mathrm{k} \Omega$ potentiometers are adjusted to minimize feedthrough of the
v.c.o. signal when the other signal is v.c.o. signal when the other signal is
absent.

Low-pass filters. The low-pass filter in Fig. 10 consists of a differential
amplifier, followed by a four-pole Sallen and Key, low-pass filter to achieve a slope of 24 dB /octave above the cutoff requency.
The variation of the low-pass resistors causes some d.c. shift in the voltage
at the vertical output connector. This is not usually a problem, since the detector is usually a.c. coupled.
Local oscillator. The Intersil 8038 used for this purpose generates sine, square and triangle waveforms. Unfortunately, the since wave is very distorted since
although the 8038 requires a full +1 15 V , in this case it is being operated from -15 V only. The distortion is germanium diode $/ 2 \mathrm{k} \Omega$ resistor network connected at pin 2 of the i.c. The $2 \mathrm{k} \Omega$ resistor should be adjusted while obser ving the spurious harmonics on a dis put from the 8038 is used by the frequency counter display circuit.
Voltage control of frequency is accomplished by the op. amp. network onnected to pin 8. Since this is a linea equal to the frequency range. Although 1000:1 is possible, improved stability and lower distortion are obtained by electing the v.c.o. capacitor by the f. /.f. range switch. c.o. is described later. pin 10 of the 8038 generates a compen sation current of about $1 \mu \mathrm{~A}$ to improve the symmetry of the waveforms at very ow frequencies. If operation at very low be omitted. The sine wave is buffered by a 741 op. amp. and passed to the local oscillator used in frecurcy-ig signal may be
equipment. A second op. amp. increases 6.7 to provide sufficient signal for the multiplier circuit.
Sweep-control. Maximum and minimum frequency are set by the two tenshown in Fig. 12. Unity-gain amplifiers A_{1} and A_{2} buffer these voltages, and set them up at opposite ends of the ten-turn tuning control. In 'manual' mode, operating the tuning control will vary
the v.c.o. control voltage between the toltages set up on the $F_{\text {max }}$ and $F_{\text {min }}$ pots. (Some care must max taken in operation that the $F_{\text {max }}$ voltage is always greater than the $F_{\text {min }}$ voltage.). Amplifier A_{6} reverses the sense of the
weep voltage so that an increase in frequency is caused by a positive-going "Horizontal Output" voltage. The rest
of the sweep-control section generates triangular wave that sweeps between controls. Amplifier A_{3} is the integrator for the sweep oscillator, and A_{4} and A_{5} act as comparators to toggle the 7400 lip-flop whenever the sweep voltage eaches $V_{\text {max }}$ and $V_{\text {min }}$.
The discrete-comp driven by the 7400 flip-flop amplifies the t.t.l. signal to $\pm 12 \mathrm{~V}$ to drive the sweep direction indicator l.e.d. and the integrator.
Frequency counter. The heart of the frequency counter in Fig. 13 is the National 74C925, which contains four decade counters, latches, a display multiplexer, and a seven-segment decoder.
Transistors Tr_{1} to Tr_{4} are the digit drivers for the common-cathode display which, in the author's instrument, was a

Fig. 10. Low-pass filter. The resistors shown as R are switched, and for bandwidths of $10,20,50,100,200,500 \mathrm{~Hz}$ should be $72 k, 36 k, 15 k, 7.2 k, 3.6 k$ and $1.3 k$.

Fig. 11. Local oscillator circuit diagram.
surplus nine-digit integrated type our digits being used. provided by a 555 timer, which although possessing a time accuracy of only about 1%, is satisfactory for this circuit as a replacement for a dial indi-
cator. cator. Signetics 8162 monostables provide the proper timing signals to latch and clear the counter in the manner shown in the timing diagram of Fig. 14. The gate time' switch sets the period of
counting to 1.0 or 0.1 seconds. A second counting to 1.0 or 0.1 seconds. A second
contact on this switch causes Tr_{5} to select the proper decimal point for the display.
Power supply. The power supply is conventional. Integrated circuit regula7805 - gational LM326 and Fairchild To avoid noise and oscillation problems the sections of the spectrum analyser Logarithmic sweep
The frequency scale in the instrument was chosen to be linear to show more learly the relationship between harmonics of a periodic waveform. In
practice, a logarithmic scale of practice, a logarithmic scale of
frequency may be more useful. Fig. 17 shows how the local oscillator may be modified for a logarithmic frequency scale. Transistors Tr_{1} and Tr_{2} are the 8038 current sources which charge and discharge the timing capacitor. The

WIRELESS WORLD, MAY 1980
59

Fig. 12. Sweep control section. Components marked with asterisk are mounted on connector.

Fig. 13. Frequency counter and display. Author used a surplus National Semiconductor display module in his prototype. A multiplexed, common-cathode type is needed. An error: pins 6, 7, 9, 10 are transposed; pin 10 should be "units"

Fig. 14. Timing diagram for counter operation.

xponential relationship between base voltage and collector current in these relationship between control voltage and oscillator frequency. The 741 operational amplifier reduces the con rol voltage swing at pin 8 to the desired amount.
In practice, the base-emitter diodes of Tr_{1} and Tr_{2} are not perfectly matched and the output waveform becomes asymmetrical at low frequencies. The suitable compensation voltage. Depending on the mismatch of the transistors, it may be necessary to ground pin 4 and

Fig. 15. Power supply circuit.

Fig. 16. Wiring should be arranged in this way to avoid common impedances and
consequent instability.

Fig. 17. Modified in this way, the local oscillator of Fig. 11 will provide a logarithmic
frequency sweep.

References

1. 'A Low Frequency Spectrum Analyser
W. L. Hale \& G. E. Weibel, Hewlett Jourral, September 1973 .
2. 'Inexpensive Wave Analyser', M. G Scroggie, Wireless World, August 1955 p .
$360-365$. '3. 'Separate the Signals from the Noise', T
Cate, Electronic Cate, Electronic Design 25, December 6, 1970
3. Modified Function Generator Yields 4. 'Modified Function Generator Yields Lin

4. Compensation of 8038 , Polyphony,
November 1977, p. 28 .

Printed circuit boards

A set of single sided p.c.b.s.s for the audio
spectrum analyzer will be available for $£ 10.50$ spectrum analyzer will be available for $£ 10.50$ including v.a.t. and UK postage from M. R.
Sagin at 23 Keyes Road, London N.W.2.

Sixty years ago

There are several reasons for printing a
monthly piece entitled 'Sixty Years Ago'. One monthly piece entitled 'Sixty Years Ago'. One
can pick out the first mention of a wellcan pick out the first mention of a well-
known effect or piece of equipment sometimes the writing itself can be funny, as in some of the replies to queries ("We advise you to take up some other pastime'");
occasionally a historical event is mentioned occasionally a historical event is mentioned

- the outbreak of war perhaps. But the most interesting are of the wrophecieiess. Bust the moft which
are wildly inaccurate Every so are wildy inaccurate. Every so often, though,
one sees someone having a 'blinding flash' one sees someone having a 'blinding flash',
and just such a one appeared in the issue for May 15, 1920, in an article on research for the
amateur, by W. T Dist ${ }^{\text {a }}$ ateur, by W. T. Ditcham.
rectifying contact can be made to a senerate oscillations of suitable characteristics, and
there are good grounds for think there are good grounds for thinking that
such is probably the case. Dr W. H. Eccles some years ago demonstrated the production
of oscillations by of oscillations by a galena contact, though at
what frequency and amplitude what frequency and amplitude, or what
constancy, I am not aware, and quite recently G. W. Pickard, the American ex-
perimenter, has stated that perimenter, has stated that he has received
signals in the United States from European signals in the United States from European
continuous wave stations on an oscillating continuous wave stations on an oscillating
crystal heterodyne. There seem to be diffi-
culties in the culties in the way of a practical application,
probably due to lack of continuity probably due to lack of continuity of the
oscillations, but such results having been oscilations, but such results having been
obtained, we are encouraged to hope that a
practical practical solution is within the bounds of
possibility. If a crystal or crystal combination possibility. If a crystal or crystal combination
can be used to oscillate, it can probably also be made to amplify, and one gets a futuristic glimpse of cascade crystal amplifiers, which valve ever materialise, will quickly relegate ordinary purposes. I can think of no line of
research more suitable for the average amateur than this one, as the avparage amateur than this one, as the apparatus
requisite for the experiments need be of the simplest, and the phenomena met with would
probably fall within the comprent probably fall within the comprehension of
the scientific novice. The investigator who the scientific novice. The investigator who
first achieves success in this particular field may feel assured of an enduring niche in the
wireless Hall of Fame and the wireless Hall of Fame, and the acquirement
of a fair quantity of less enduring, but never. theless perfectly good, lucre.'

Land mobile radio and spectrum utilisation

Introduction to the possible use of wideband modulation techniques

> by P. A. Matthews B.Sc.(Eng.), Ph.D., F.I.E.E., M.I.E.E.E.

Department of Electrical and Electronic Engineering, University of Leeds

With conventional modulation methods the spectrum available for meet the demand. In this article the author first outlines the propagation problems in communicating with moving vehicles then discusses the number of users possible in a given
area; and finally goes on to consider the possibility of using
wideband modulation such as
in the various spread spectrum

The conventional method of providing radio communication to vehicles on land is to use either a.m. or f.m. radio operating at v.h.f. or u.h.f. In general the ficient to meet the demand from users or potential users of these systems.
Most signals for communicating to vehicles use a base station with anto be served. The antennas area to be served. The antennas on the
vehicles are, however, close to the ground and it is unusual for there to be a clear line of sight between the base station and the vehicle antennas. The signal suffers from reflection at the fraction over hills and diffraction around buildings. As a vehicle drives along the road, the variation in signal strength can be divided into three parts. Firstly, as the radial distance between
transmitter and receiver increases there is an increase in spatial attenuation. For this type of path, the median received power falls approximately as the fourth power or the distance between trans mitter and receiver. This variation in with the square law variation expected
in free space.
The median power level falls much more rapidly on a mobile radio path
than, for example, in a line-of-sight radio relay system. The variation in power with distance is illustrated in Fig. . This is drawn for a transmitter power of 10 W , a half wavelength dipole antenna at the transmitter, a transmitter of 2 metres and a quarter wavelength monopole at the receiver. It is assumed hat the antennas have the gains expected of ideal antennas of these losses in the system. The fourth power
lire law is independent of frequency, but the
free space variation depends on frequency when the antenna gains are ideal noise power in a bandwidth of 10 kHz is shown.
These curves show that, as the distall be a 40 dB fom 1 km to 10 km , there power. It also appears that using a 10 W transmitter there is a good margin between the received power and the noise level which may be expected in the receiver. If we assume a receiver i.f. of 6 dB , then at a range of 20 km the margin is 45 db . However, we have not yet taken into account the fluctuations in received power due to diffraction and年lection.
Because vehicles have to follow the receiver will be obscured by hills and buildings. When the vehicle is in the shadow areas, a signal may be received the buildings. Such diffraction effects are relatively insensitive to frequency: and over any one of the bands allocated or mobile radio the attenuation of the signal due to shadowing is relatively:
Fig. 1. Variation in mean received power Fig. 1. Variation in mean received po
in a mobile radio system with fourth power law dependence on distance compared with square law variation in free space. Transmitter power is 10 W ; transmitter 100 m , receiver 2 m .
constant for any one path. For a parti cular path the effect of shadowing may be calculated. However, when designing a mobile ractuations which may occur due to shadowing as a vehicle moves from one point to another and these fluctuations are best described by a probability distributily a certain shadow attenuation occurring Measurements taken over a large number of sites ${ }^{1}$ show that the distribution of shadow fading follows a log-normal distribution. This is shown in Fig. 2. The logthe standard deviation σ in dB and for different areas and frequencies the value of σ may change. However, typical values for σ seem to lie between
6 and 12 dB . Taking the curve for 6 and 12 dB . Taking the curve for
$\sigma=6 \mathrm{~dB}$, we can see that an attenuation of more than 14dB can be expected at 1% of sites, or for a vehicle travelling along a road for 1% of the time.
Besides the attenuation due to sha dowing, there is also fading caused by arriving by different paths. This occurs because signals can be reflected from buildings giving a signal at the receiving number of signals. As phasor sum of along the road the path lengths between transmitter and receiver for the various eflected components of the signal vary in a random manner. The vehicle

WIRELESS WORLD, MAY 1980
Because of the combined effects of shadowing and the rapid fading due to reflection, the probability distribution
for the received signal for the received signal depends on the combination of the two individual dis-
tributions. The derivation of the expressions for the probability distribuions has been given by French ${ }^{2}$. The result is shown in Fig. 2 for two different values for the standard deviation σ of the shadow fading. These curves show that at 1% of sites and with $\sigma=6 \mathrm{~dB}$, an; expected. Thus the median margin above noise of 45 dB is reduced to only 21 dB for 1% of sites. The actual margin required depends on the type of modulation used and the output
signal/noise ratio required. For example for a s.s.b. transmission the output s.n.r.
is the same as the input s.n.r. Assuming is the same as the input s.n.r. Assuming
a 5 kHz if. bandwidth, a required output s.n.r. of 10 dB and a 99% probability of reception Fig. 3 shows a range of 36 km . For f.m. with a 10 kHz if. bandwidth and assuming no noise improve
corresponding range is 25 km .

Area cover and number

of users

If an isolated area is served by one base: station the problem of fading can in principle be overcome by increasing the

Fig. 2. Fading levels for log-normal shadow fading and long-normal plus Rayleigh
fading. Area mean given by fourth power law variation

[^1]transmitter powers. However, there are practical limits to the power of mobile
transmitters and problems caused by intermodulation of signals. In the isolated area, the number of users is limited by the number of channels. available.
In practice the radio transmissions interference is likely between users of the same channel in adjacent areas. To imit the effect of interference there must. be sufficient distance between for the probability of interference to be below some low limit. If the radius. served by a given transmitter is r_{1}, and the distance between transmitters using the same frequency is r_{2}, then over a
large area that frequency can only be used for a fraction of the total area. The total area can be divided into cells and the total number of channels divided into groups shared between the cells. If
the ratio of the distances $\left(r_{2} / r_{r}\right)$ is called the ratio of the distances $\left(r_{2} / r_{1}\right)$ is called
the reuse distance D then the number of groups of frequencies, C, is given by $C=D^{2 /} / 3$. To find the re-use distance the probability of interference occurring must take into account the probability
of fading of the wanted transmission, whilst the interfering signal may not have faded. The result is that the re-use distances may be large, and hence the number of groups large. Because the re-use distance is a ratio of distances,
the number of groups is independent of the actual area, provided all the cells are within the same radio horizon distance Calculations of re-use distance pre sented in (2) show that taking into
account both shadow fading interference fading, the available chan ness may have to be divided into large numbers of groups. For example, for a probability of interference of not more than 3%, f.m. with 25 kHz spacing may
require 57 groups and s.s.b. 133 groups. Considering a 10 MHz bandwidth, the f.m. system with a channel spacing of 5 kHz would give 15 channels per group. Thus, in any one particular area the
number of channels which can be used number of channels which can be used
is severely limited when the problem of mutual interference is taken into account.
Because the number of groups and cells is independent of their area, the

Wireless world, may 1980
each cell is limited. This implevered by large number of cells with low power transmitters in each cell. However, such has to be made over a distance spanning several cells. Direct communication is not possible and a relay system must be set up to transfer calls from one cell to another.

Wideband modulation

So far this discussion has considered fm. or s.s.b. transmission, and it has transmissions on the same frequency is taken into account the number of users/ MHz in a given area is limited to a small number. We need to consider can accommodate more users A class of modulation techniques which should be considered are the various spread specrum techniques ${ }^{(3)}$.
The use of wideband spread spectrum for mobile radio systems because of its apparently extravagant use of the rf. bandwidth. In a spread spectrum system the available power may be spread megahertz, either by modulating of conventional transmission by a noiselike wideband signal or by hopping the carrier frequency over the band. At the receiver, the original transmission is recovered by taking advantage of noise-like signal or of the hopping pattern. In both cases the s.n.r. for the wanted signal is raised relative he bandwidth of the wide by the ratio. that of the narrow band signal. This so-called processing gain G_{p} improves the s.n.r. for the wanted signal, and at he same time gives the interfering signals a noise-like property. The pro correlation between the wanted and unwanted signals. Ideally, there should no cross-correlation.
If a given band is to be shared by a from each user must be spread in manner which is unique to that user, and in a way which produces a wideband signal which is uncorrelated with he signals from other users. The methods by which the spreading proDixon. ${ }^{3}$ So far as a particular wanted signal is concerned, the signals from the users are noise. As the number of and rises. If each of the transmission produces the same power at a receiver then the s.n.r. after recovering a partcular signal can be estimated. Suppose there are N transmissions, all covering the same band. Then there is 1 wanted transmissions. At the receiver antenna the s.n.r. is $1 /(N-1)$, but after proces-

Fig. 4. Number of users in a spread sprocrum system as a function of
processing gain and required output signal-to-noise ratio.
sing with a processing gain G_{p}, the s.n.r sing with a processing gain G_{p}, the s.n.r
becomes $R=G_{p} /(N-1)$. This gives $N=1+\left(G_{p} / R\right)$, which is plotted in Fig. 4 for various values of processing gain and output s.n.r. For example, if the required value of $R=16 \mathrm{~dB}$ in a 5 kHz 10 MHz , then $\mathrm{G}_{p}=33 \mathrm{~dB}$ and $N=50$. It appears that 50 users could be accommodated in the 10 MHz bandwidth. each transmission produces the sat power at the receiver
Clearly this requirement for equal power levels cannot be achieved if all he transmitters on the vehicle radiate the same power because the vehicles given receiver. However, for transmit sion to a common base station it may be possible to control the power transmit ed from the mobiles to give equal Because of the variability in the path loss between transmitter and receive due to distance and shadowing, control of power must be carried out by meat curing the path loss in some way. This may be possible by using the signal station to control the level of transmis sion back to the base station.
With a wideband signal the effects of fading will be different from the effect shadow fading which is relatively in sensitive to frequency may be expected be the same in both cases. The effect of phase interference fading will be depends strongly on the frequading depends strongly on the frequency or offers from deep fading because of the cancellation of the signal due to the phasor sum of the signals arriving by adjacent frequency the phasor sum may reach a maximum. The effect on a
widéband signal will be to distort the signal spectrum in amplitude and phase. wanted signal can be recovered from the energy in the distorted spectrum. For transmission from mobiles to may be possible to use wideband trans missions. Power control of the trans missions is necessary and must be base on the measured path loss. The med attenuation due to both diaster for shadow fading provided the dynamic h range of the system is great enough he effects of phase interference fading have to be worked out in detail, bu provided the signal can be recover e that wideband modulation techniques may provide at least as much system capacity as narrow band schemes. This problem of recovery of the signal will differ depending on whether frequency hopping scheme is used. In frequency hopping scheme the signal at any one time is a narrow band signal on particular frequency. Even if the effed rolling the mean is removed by con uar frequency component at any on time may be reduced due to phase in erference fading. This may be over simultaneously but this will reduce the number of users in inverse proportion to he number of frequencies used for particular user. For noise-like signal the effect of distortion of the signal spectrum is to reduce the output s.n.r number of users must be reduced. Th reduction in number of users has yet to be calculated or measured.

References

1. W. C. Jakes, Ed. Microwave Mobile Com 2. R. C. French. "The eff. . 9 - 131 . shadowing on channel reuse in mobile radio," IEE Trans. VT-28, 1979, pp. 171-181. 3. R. C. Dixon. Spread Spectrum System

63
he
展
都

Digital capacitance meter

The printed-board pattern reproduced here is for the digital capacitance meter described in our April issue. There was no space to publish the layout with the article and, regrettably,
we neglected to say it was held over. The drawings are full size.
copper side

Programmable audio attenuator

Gain controlled line amplifier offers a 60 dB range in 1 dB steps

by J. M. Didden

After experimenting with various
linear gain control systems, the autho chose a combination of linear and logic circuits to provide a high quality audio attenuator. The final design uses a 6 -bit word to program the gain, and can be used for remote contro
applications or, with the aid of a microprocessor, for automatic leve control.
This circuit was originally designed to remotely control the volume and
balance in a stereo system. Several methods were tried, such as the twoquadrant multiplier in Fig.1. However this circuit suffered from high distortion for input levels of more than 100 mV , Attempts to improve the performance with current-source loading did not significantly improve the performance A f.e.t. used as a voltage controlled
resistor produced similar problems, so a 1.d.r. design was tried as shown in Fig.2.

Fig. 2 Closed-loop light dependent resistor attenuator.

Fig. 3 Basic gain switching circuit.

Fig. 4 Extended circuit with two independent switches.
This circuit had a good signal level capability, and tracking between units compound audio plus d.c. input. The attenuated d.c. was fed back to the control circuit. Unfortunately, the l.d.r. produced high noise levels at medium to
high attenuation, and control-loop high attenuation, and control-loop
stability was difficult to achieve. Because these analogue approaches did not produce the performance required, I investigated gain switching with f.e.ts. Although fe.ts are nonlinear, this is not a problem if the signal voltage across a
closed switch is very small. A basic circuit is shown in Fig.3. When f.e.t. S_{1} is closed, the signal across it equals the input voltage times the ratio of the f.e.t. on resistance to R_{2}. In practice, ratios of level of several volts, which is not uncommon in a line amplifier, produces only a few millivolts across the switch. At these levels the f.e.t. is almost per-
fectly linear. Two independent gain fectly linear. Two independent gain
settings can be achieved by switching R_{3} and keeping I_{3} constant. With S_{2} closed and S_{3} open in Fig.4, $R_{3 a}$ and $R_{3 b}$
are connected from R_{1} to the virtual
earth of the op-amp. With S_{2} open and earth of the op-amp. With S_{2} open and earth. Therefore, by using a s.p.d.t. switch for $\mathrm{S}_{2} \mathrm{~S}_{3}$, and a s.p.s.t. for S_{1}, four gain settings are possible.
An extension of this circuit is shown in Fig. 5 where, with S_{5} closed and S_{4} open, gain is determined by the ratio of
R_{5} to R_{1}. With S_{5} open and S_{4} closed, the gain is determined by the ratio of R_{5} to R_{1} and R_{3} to R_{4}. Combining the circuits in Fig. 4 and Fig. 5 gives eight gain
settings. For all of these configurations settings. For all of these configurations
the switches have only a small signal across their on resistance and carry very little current when opened. The values of the series resistors are high compared with the off resistance. Selection of a suitable f.e.t. presented
some problems. Switch arrays for analogue applications are available, but are generally expensive. Analogue multiplexers, such as the 4051, contain eight c.m.o.s. switches with a common input and integral one-of-eight decoder for
control by a 3 -bit word. However, the switching produces spikes on the audio output due to an internal capacitive coupling of the control signal to the switch terminaling the switch but maller re by loading the switch, but smaller rse-
sistors must then be used which consequently produces higher distortion levels. Although "soft" switching with a
RC network is one solution, see Fig. 6,

Fig. 5 An hive two switch circuit
\therefore. \qquad ? which contains two s.p.d.t. switches and
an inverter. In practice, a gradual change and a range of about 60 dB is sufficient for most applications. Because high value series resistors are
required, high attenuation required, high attenuation can only be
achieved with the circuit in Fig. 5 . However, as shown in Fig. 7, if $S_{1 b}$ is closed and S_{12} is open, a small current flows through the internal switch capacitance. At high attenuation and
high signal frequencies, this current high signal frequencies, this current
may not be insignificant and can cause an output that rises with frequency.
Fig. 7 Internal capacitance effect and compensation low-pass filter.

Fig. 8 Complete attenuator circuit for one channel. The switches are grouped in five i.cs as follows; $S_{5}+S_{\sigma^{\prime}} S_{7}+S_{8 a b}$
$S_{2 a b}+S_{3 a t} S_{400}+S_{1}$ and $S_{9}+S_{10}$. All resistors should be 1%.

This problem can be overcome by rounding the left terminal of S_{1} when the 4007 s.p.d.t. switches. Because ther is an on resistance, R_{s}, a small signa voltage remains across the open switch The low-pass filter $R_{5} C_{2}$ compensates for this with S_{2} closed when $\mathrm{S}_{1 \mathrm{~b}}$ is closed is flat within 0.3 dB up to 25 kHz and a high attenuation. Fig. 8 shows the final circuit for one channel and table shows the range of attenuation levels Ten mixed s.p.p.t. and s.p.d.t. switches with five 4007 i.cs. It is important that the signal amplitudes across $\mathrm{S}_{1}, \mathrm{~S}_{8}, \mathrm{~S}_{5}, \mathrm{~S}_{6}$ and S_{7} do not exceed the positive or negative supply voltages because an
internal protection diode will conduct and cause distortion. As audio signals are bipolar, the supply voltage should be centered around ground because one side of the open switches is always connected to either a signal ground or ances of the p and n-channel m.o.s.f.e.ts, a positive supply of 7.6 V and a negative supply of 8.2 V is used. In Fig. 8, S_{1} and $\mathrm{S}_{\text {sa,b }}$ can be controlled by a single bit. Switches S_{22} to $S_{4 b}$ and S_{5} to S_{7} require
the four decoded values of a 2 -bit control word. This is carried out by a 4556 which containes two one-of-four decoders, see Fig. 9.
Selection of the switch-network re sistors is a compromise as already ex switch is about 300Ω and the maximum variation is about 200Ω. With a series resistor of $22 \mathrm{k} \Omega 1 \%$, this is comparable with the switch tolerance. Cal culations for the resistor values are
given in the appendix. Fig. 8 also shows that some switches are capacitorcoupled to the circuit by C_{8} and C_{11} These remove a small output offsetvoltage change with gain which can be

Fig. 10 Inverting input buffer

Fig. 11 Alternative compensation net works for other op-amps.

Table 2. Performance details of the attenuator

Max. r.m.s. output level	8.5 V across 600Ω.
Max. input level	3.8 V or 9 V depending on S_{1}, provided max. output level is no exceeded.
Max. capacitive load	10 nF .
Frequency response	better than 10 Hz to 25 kHz within 1 dB .
Output noise level	at least 86 dB below 1 V r.m.s. at all gain settings (unweighted).
T.h.d. and i.m.	less than 0.03% and 0.02% respectively.
Gain	variable in 1 dB steps from 16.8 dB to -46.2 dB .

heard as clicks at low input signal levels. The capacitor values have been chosen to give a low-frequency res amp LF 356 is usz. A f.e.t. input op input impedance, wide bandwe a high slew-rate and low distortion. A NE 5534 is used at the output because it can deliver a high output level into a 6008 load with little distortion. With R_{21} and C_{10} to stabilize the op-amp, a 10 nF load
will not produce ringing or overshot a square-wave signal. The 5534 is also a low noise device, which is important, because most of the attenuation takes place at its input and this reduces the

Appendix

Calculation of resistor values.
For these calculations a dB table or calculator with log. and inverse log. functions is re quired. with S open,

$$
\begin{equation*}
i=\frac{U_{u 1}}{R_{1}+R_{f}} \tag{1}
\end{equation*}
$$

for an output of U_{4} volts. With S closed and an output of $U_{u 42}$
tage source U_{1} is

$$
\begin{equation*}
U_{\mathrm{u} 2} \frac{R_{\mathrm{x}}}{R_{1}+R_{\mathrm{x}}} \tag{}
\end{equation*}
$$

and the equivalent source resistor is

$$
\begin{equation*}
\frac{R_{l} R_{x}}{R_{x}+D} \tag{3}
\end{equation*}
$$

therefore,
$i=U_{u 2} \frac{R_{R_{X}}\left(R_{1}+R_{f}\right)}{R_{1} R_{X}+R_{f}\left(R_{1}+R_{X}\right)}$
signal-to-noise ratio of the last stage. Performance parameters of the complete amplifier are shown in table 2. If a the LF 350 can be used in is required mode as shown in Fig. 10. The compen sation capacitors, which may b necessary with other op-amps, are shown in Fig. 11 .
If a visual indication of the attenuation is required, the control word can be
converted to a two-digit b.c.d. output for driving a seven segment display

To be continued

Because i always equals i_{y}, equations (1) and (4) are equal. Substituting G for $U_{\mathrm{u} 2} / U_{\mathrm{u} 1}$ gives

$$
R_{\mathrm{x}}=\frac{R_{\mathrm{t}} R_{\mathrm{f}}}{(G-1) R_{1}+R_{\mathrm{f}}}
$$

The minimum resistor values for R_{1} and R_{f} The minimum resistor values for R_{1} and R_{f}
for a given G and R_{x}, are obtained if $R_{1}=R_{f}$.
The minimum $R_{\text {is }}$ is found for $G=3$ dB The minimum R_{x} is found for $G=3 \mathrm{~dB}$ and.
taking $R_{x}=20 \mathrm{k} \Omega_{\text {as }}$ as design value, R_{1} and R_{x} taking $R_{x}=20 \mathrm{k} \Omega$ as a design value, R_{1} and R_{x}
are about $18 \mathrm{kk} \Omega$. However, R_{f} is also part of are 4dB network, so this is calculated first the 4 dB network,
using a R_{f} of $18 \mathrm{k} \Omega$.
(4)

0 \pm y. d

As already mentioned, i_{1}, i_{2} and U_{1} are equal As already mentioned, i_{1}, i_{2} and U_{1} are equal
in both cases. In the io of i_{s} to $i_{1}+i_{\text {, }}$, and in the second case, the
ratio of i_{s} to i_{1}. The change in gain is thereratio of i_{s} to i_{1}. The change in gain is there-
fore
$\quad G=\frac{i_{1}+i_{2}}{i_{1}}$
and equations (6), (7) and (8) give
and $\quad R_{1}=R_{2}(G-1)$

$R_{2}=\frac{R_{1}}{G-1}$
 For $G=4 \mathrm{~dB}, R_{2}$ is about $48 \mathrm{k} \Omega$. Using the:
standard value of $47 \mathrm{k} \Omega$ and Standard value of $47 \mathrm{k} \Omega$ and adding the
nominal on resistance of the switch gives
$47.3 \mathrm{k} \Omega$ and R_{1} becomes $27.6 \mathrm{k} \Omega$ with the $47.3 \mathrm{k} \Omega$ and R_{1} becomes $27 . \mathrm{kk} \Omega$. With the
nearest preferred values, R_{15} is $47 \mathrm{k} \Omega$ and R_{17}
is $28 \mathrm{k} \Omega$ in Fig .8 .
The value of R_{t} in (5) now becomes $17.46 \mathrm{k} \Omega$, .e. $R_{1} / / R_{2}$.The R_{x} values are calculated next.
For $G=1 \mathrm{~dB}, R_{\mathrm{x}}$ is $72.64 \mathrm{k} \Omega$, which is the on resistance in F g. 8. For $G=2 \mathrm{~dB}, R_{\mathrm{x}}$ is $34.23 \mathrm{k} \Omega$ which is $R_{18}+R_{19}+$ on resistance. For $G=3 \mathrm{~dB}$,
R_{x} is 21.48 kK , ie. I_{18}, on resistance. With the nearest preferred value, R_{18} is $21 \mathrm{k} \Omega$, R_{19} is the the
n 12 and $\mathrm{k} \Omega$ and $R_{2 x}$ is $3.7 .4 \mathrm{k} \Omega$.,R_{18} is $21 \mathrm{k} \Omega, R_{19}$ is 12.4
For the 8 dB switch refer to Fig. 14. With S For the 8 dd switch refer to Fig. 14 . With S
open the gain is 0 dB , and with S closed the gain
is is $R_{1}+R_{x} / R_{x}$ which gives

$R_{x}=\frac{R_{1}}{G-1}$
(12) Choosing $33 \mathrm{k} \Omega$ for R_{1} gives $21.83 \mathrm{k} \Omega$ for R_{x}. Subtracting the 300Ω on resistance gives a
standard value for R_{4} in F ig. 8 of $21.5 \mathrm{k} \Omega$ and 33 kland for R_{5}.
Calculations for the remaining switch netCalculations for the remaining switch net-
work are more difficult because the series resWork are more difficult because the series res-
istors are either connected to ground or to
virtual earth, see the equivalent circuit in Fig. 15. To save a switch, R_{14} in Fig. 8 always

Fig. 15
delivers current to the summing node
Therefore, for the various gain setting
ollowing input currents flow settings, the
No attenuation, $i_{1}+i_{4}$
$-16 \mathrm{~dB}, i_{2}$
$-34 \mathrm{~dB}, i_{2}+$
$-48 \mathrm{~dB}, i_{4}$
For a gain step A, the current ratios are

$$
\begin{aligned}
& A=\frac{i_{2}+i_{y}}{i_{1}+i_{y}} \\
& A=\frac{i_{3}+i_{y}}{i_{2}+i_{y}} \\
& A=\frac{i_{y}}{i_{3}+i_{y}}
\end{aligned}
$$

If all series resistors are equal, gain changes only depend
Therefore,
$G_{1}=\frac{i_{2}}{i_{1}}$
$\mathrm{G}_{2}=\frac{i_{3}}{i_{2}}$
$\mathrm{G}_{3}=\frac{i_{4}}{i_{3}}$
If A is -16 dB,
$\mathrm{G}_{3}=\frac{A}{1-A}(0.188-14.5 \mathrm{~dB})$
$\mathrm{G}_{2}=\frac{A}{1+A}(0.137-17.3 \mathrm{~dB})$
$\mathrm{G}_{1}=\frac{A}{1+\frac{A^{2}}{1+A}}(0.155-16.2 \mathrm{~dB}) \quad$ (20)

[^2] he series resistor relative to $G_{n}-1$.

In the simplified circuit of Fig. 16, because
$Z_{i}^{i}=z_{i}^{\prime} / / R$,

and | $Z_{i}=\frac{Z_{i}^{1} R}{R-Z_{i}^{1}}$ |
| :---: |
| $R_{1}=Z_{i}-\frac{R \cdot R_{\mathrm{a}}}{R+R_{\mathrm{a}}}$ |
| also, because |
| $G_{1}=\frac{R \cdot R_{\mathrm{a}}}{R+R_{\mathrm{a}}}$ |
| Z_{i} |

$\mathrm{G}_{1} \mathrm{Z}_{\mathrm{i}}=\frac{R \cdot R_{\mathrm{a}}}{R+\mathrm{R}_{\mathrm{a}}}$

Therefore,
$R_{1}=Z_{i}\left(1-G_{1}\right)$

Again, using a design value of $22 \mathrm{k} \Omega$ for the series resistors, and adding 300Ω on resistance gives $22.3 \mathrm{k} \Omega$ for each resistor. As R_{14} in Fig. 8
has no series switch, R in formula (30) Fand on has no series switch, R in formula (30) and on
will be 22 k Ω. After a little trial-and-error to find a standard dalue for R_{1}, the value of $Z_{1}{ }_{1}^{1}$ was set
to $15.04 \mathrm{k} \Omega$, which is the constant to $1.54 \mathrm{k} \Omega$, which is the constant load pre-
sented to the buffer sented to the buffer amplififirs. From (2)ad), (223)
and (24$), Z_{i}$ is $41.2 \mathrm{k} \Omega$ and R_{1} is $39 \mathrm{k} \Omega$. From (25) and is $10.55 \mathrm{~K} \Omega \Omega$. By repeating this procedure Fig.
$R_{\mathrm{i}} 7$ is achieved where 17 is achieved where

$$
\begin{equation*}
R_{2}=R_{\mathrm{a}}-\frac{R \cdot R_{\mathrm{b}}}{R+R_{\mathrm{b}}} \tag{26}
\end{equation*}
$$

$\mathrm{G}_{2}=\frac{\frac{R \cdot R_{\mathrm{b}}}{R+R_{\mathrm{b}}}}{R_{\mathrm{a}}}$
(27)

ELECTRONIC SUPPLIES LIMITED All mail to PO Box 3, Rayleigh, Essex SS6 8LR. Telephone: Sourthend (0702) 554155.

Bach-Simpson Quality test equipment now available at new LOWER PRICES!

 $31 / 2$ digit DMM - LED-basic 101000 V. D.C. 600 V A. 20 meg ohms and 10A A.C. and D.C. 465 A (24OV. A.C.)
465 D (240V. A.C./Battery) As the model 464 but is fully autoranging and has low pow

B ${ }_{460-3 \mathrm{D}}^{\mathbf{4 6 0 - 3}(240 \mathrm{~V} . \mathrm{A} . \mathrm{C} .)}$ (Battery) ${ }^{\mathrm{E} 181}$ As model 465 but without autoranging, but does include analogue meter for peaks and scanning trends
C ${ }^{463}$ Small portable $3^{1 / 2}$ digit DMM - LCD display - basic accuracy $\pm 0.2 \%$ ransient suppression and overioad
protection - wide KHz A.C. Voltage response
display - 23 ranges - basic accuracy $\pm 0.25 \%$ - basic protection. Complete with charger mains lea
batteries

UND LEVEL METER fully conforming to I.E.C. and B.S.
specifications. Fast or slow
resporse - full coverage 40response - full coverage $40-$
$140 \mathrm{~dB}-\mathrm{A}, \mathrm{B}$ and C weightings
selection $E]_{\text {Tho }}^{260-6 P}$ $\mathrm{H}^{380} \mathrm{E159}$ The world's largest selling AMM- Direct reading battery operated
sturdy construction-taut band
portable MICROWAVE LEAKAGE movement-33 ran - taut band movement -33 ranges - D.C. leakage at a frequency of accuracy $\pm 2 \%$ over a whide 2450 MHz . Complete with carrying high speed circuit breaker together
with additional fuses for excellent $1]_{\text {Small }}^{710}$ £81 F] 260-6XLPM £61 As the model $260-6 \mathrm{P}$ but includes high impact shock resistant case, and low power ohms ranges METER covering 10 Hz to 60 MH Accurate to ± 1 count to time base accuracy - switchable low pass

And how have we manajed this good news?

Through direct marketing we can now offer these test instruments and many many more at very competitive prices, which include
Securicor delivery to your address and our product guarantee for one year securicor delivery to your address and our product guarantee for one year. The only extra is VAT at the current rate. Existing
customers need only send their purchase order direct to us. New customers - cash with order please. But first why not writ now for our multi-page catalogue and detailed price list. Remember you are looking at only a few of our instruments - there are
many more plus a comprehensive range of accessories.

Bach-Simpson

ww-068 FOR FURTHER DETAILS

Binary codes for error protection

Detection and correction of errors in transmitted binary data
by D. A. Bell, F.Inst.P., F.I.E.E

So far as is possible without recourse to far more mathematics than would Prof. Bell expounds the theory underlying the use of protection bits, which enable errors in data transmission to be detected and
corrected. An example of the corrected. An example of the
technique is the Hamming códe u to protect the header row in teletext and viewdata transmissions
The term "error-protection" covers correction". The latter is prima faci more desirable but is always more com plex (much more complex for multiple rrors) so that it is sometimes better in practice to use only error detection an repetition or by taking them out of the system. Communication systems have o rely on repetition, but in ban learing operations an occasional che que on which the account number candiverted from the machine for human attention. (This is particularly relevan ecause error-correcting codes are les ell developed in decimal than in binary notation.)

Check digits

Most of the codes in common use are binary codes, and most readers must be amiliar with the use of a single (binary) heck digit to detect a single error, or more exactly any odd number of errors. input to a computer or for the text of eletext, each character (number, letter punctuation mark, etc.) is represented y a particular pattern of 7 binary digits, made 1 or 0 according as the number of ones in the original 7 digits is odd or even: the total count of ones over the 8 digits is then always even, i.e. it is equal o zero modulo 2^{*}. In order to correct an find which digit is in error and inter change 0 and 1 in that place. If w start with one information digit and add ne check dige,

To reduce a number modulo x, subtract from he largest possible multiple of x leaving a dif
reception is due to an error in the infor mation digit or in the check digit, so resolve this ambiguity. In fact a single error-correcting code for a group n digits long requires to include enough heck digits to distinguish between no rror and an error in any one of n place can distinguish between $2 r$ possibilities (see "Communication Theory", Wire less World, April 1976) so code con ruction is simplified if $n=2^{r}-1$. The number of information digits, $n-r$, is which can be corrected is t, and the complete characteristics of the error correcting code are denoted in the form he two check digits is then ode which fits into the standard pattern of single-error-correcting codes with $r=2, n=2^{2}-1=3, k=n-r=1$. Let us now try to construct the (7,4,1) which digit places are checked by heck digit, an array is constructed with line for each check digit containing a eight (either 0 or 1 in binary) for each the n digits or the code. Remember n places) In the following example every digit place is covered by at least one check digit, so any single error will be discovered: put another way, the success all the

\section*{Digit no
 Check no. 1 | | 0 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Checkno. | 0 | 0 | 1 | 1 | 1 | 1 | | $\begin{array}{llllllll}\text { Check no. } 2 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ \text { Check no. } & 1 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$}

Then proceeding by successive binary divisions, the first check digit indicates whether there is an error in the second second and fourth quarters; and the last covers the odd numbered places (odd eighths, approximately). Hamming ${ }^{1}$ offered a special feature: if the check successive powers of, 2 and 4 (and codes), the combined result of the check sums (known as the "syndrome") would represent in binary the number of the number 1 produced an even sum but numbers 2 and 3 produced odd sums,
be in digit number 3 be in digit number 3 The addition of one overall check allow it to detect $t+1$ errors. (See below for explanation in terms of "distance".) Thus the ($7,4,1$) code can be extended to length 8 digits, 4 information and 4 check digits, which will correct all rors. There are then 10 possibilities to consider (no error, 8 distinct single errors, or any double error) so that 4 code is not perfectly packed. This is the code which is used for the address elements in teletext.
It was remarked above that a single-error-detecting code using a simple parity check will actually detect any
odd number of errors; but this is usually ignored on the ground that the occurrence of three errors is of negligible probability compared with the occurrence of one error. If errors occur at time, with probability p per digit, then the probability of one error in a block of n digits is $n p$ and the probabilities of 2,3 , \ldots errors are $n(n-1) p^{2}, n(n-1)(n-2) p^{3}$ etc. One commonly takes the error in a block is P the probability of t errors is P^{t}. So if a single parity check is used for error detection when the probability of one error in a block is 10^{-3} one can ignore the detection of a triple about 10^{-9} : one is more concerned about the undetected double error which in this case would have probability about
10^{-6}.

Codes for
multiple-error-correction
For codes with the capability of correcting multiple (random) errors, the method of allocating a particular task to one has to turn to the idea of distance between code members. The idea in principle is that one allocates to each ding the corresponding code-member

- The terminology is that a message is a unit of

signal. Then as long as errors shift the signal from the code member only to
another point in its cluster, the receiver another point in its cluster, the receiver
can still identify the signal as originating from that code member (pro-
vided the clusters do not overlap). The vided the clusters do not overlap). The
distance between two binary signals, (properly called Hamming distance to distinguish it from geometric distance) is defined as simply the number of digits
in which they differ and the points in the in which they differ and the points in the
cluster around the code member are known as guard points. A code to correct t errors must have a distance of at least $2 t+1$ between any pair of code points, since each must be surrounded overlapping the two clusters must be separated by a further unit of distance. If the distance is increased by one by the addition of an overall check digit, the
extra set of points allocated will each extra set of points allocated will each be
equidistant between two signal points; equidistant between two signal points;
and this means that they can be recog. nized as erroneous but not corrected. The code will still be capable of correcting t errors and can now also detect
$t+1$ errors. In the single-error $t+1$ errors. In the single-error-
correcting code with $d=3$, there are n correcting code with $d=3$, there are n
possible errors so that each cluster will contain $n+1$ points, including the code point. But the whole binary code of length n occupies a 'space' of 2^{n} points. points which can be packed into the space (i.e. the number of members of the code) is the total number of points available, 2^{n}, divided by the number of points in each cluster, $n+1$. But it has
been shown above that the quotient can be made equal to $2 r^{r}$ by choosing n equal to one less than a power of two. These Hamming single-error-correcting codes are therefore said to be perfectly packed, meaning that every point in the
available space is allocated to one of the clusters of guard points.
Each code point in a code for correcting t errors will need guard points
corresponding to $1,2, \ldots t$ errors, the corresponding to $1,2, \ldots t$ errors, the
numbers of which are given by

$$
n,\binom{n}{2} \cdots\binom{n}{t}
$$

where the binomial coefficient
is the number of ways of choosing x (erroneous) digits out of n and is equa of the $(23,12,3)$ code due to Golay 2 (see Appendix), multiple-error-correcting binary codes are not perfectly packed; ${ }^{3}$ and the packing gets worse as n increases. (One can visualise packing of
shapes in three dimensions. But packing of polyhedra in n dimensions, where n may range from seven to some thousands, is to most of us just a form of expression for the mathematical con-
straints, or at most an allegory.) The straints, or at most an allegory.) The
problem then is so to distribute the code points in n-dimensional space that as many as possible may be packed in without their clusters of guard points matical techniques which have been.

Fig. 1. Numbers of check digits for error Therrecting codes of length 15. (a) Theoretical (non-integral) values. (b) The
mt rule for $B C H$ codes. Circled point mt rule for $B C H$ codes. Circled points.
indicate the values for actual $B C H$ codes.
employed are above the level which readers of Wireless World can reasonably be expected to digest. Those who are not deterred by the use of combinatorial algebra can find the details in a specialist book ${ }^{4}$. A general-purpose set of codes, which can be constructed to lengths and with various error correcting capacities is generally known as BCH (Bose-Chaudhuri Hoquenghem in full); and it has the to correct t errors can be constructed with not more than $m t$ check digits. For $t=1$ the relation $r=m t$ always holds exactly and these codes are equivalent to the Hamming codes. But for $n=15$ or
greater and $t \geqslant 3$ for $n=15$ and roughly proportionately larger for longer codes fewer check digits are required. Figure for $n=15$ (a fairly small value of n
makes the calculation of binomial coefmakes the calculation of binomial coef ficients manageable, or avoidable by the
use of tabulated values) shows (a) the minimum number of check digits ideally required in order to correct 1,2 , or 3 errors (b) the straight-line relationship $r=m t$ and circled points corresponding from factorising suitably $\mathrm{X}^{n}-1$, where n is the length of the code, into a product $\mathrm{g}(\mathrm{X}) \mathrm{h}(\mathrm{X})$; and a table of irreducible polynomials (the algebraic equivalent of prime numbers) is given in reference can be used to form a generator matrix and a check matrix which are necessar ily mutually orthogonal. For example, $\mathrm{X}^{15}-1=\left(\mathrm{X}^{4}+\mathrm{X}+1\right)\left(\mathrm{X}^{4}+\mathrm{X}^{3}+\mathrm{X}^{2}+\mathrm{X}+1\right)$
$\left(\mathrm{X}^{2}+1\right)\left(\mathrm{X}^{4}+\mathrm{X}^{3}+1\right)(\mathrm{X}+1)$ $\left.\mathrm{X}^{2}+1\right)\left(\mathrm{X}^{4}+\mathrm{X}^{3}+1\right)(\mathrm{X}+1)$ The las
factor would be $(\mathrm{X}-1)$ in ordinary algebra; but -1 does not exist separately in binary arithmetic, so +1 is written instead. The first thriee factors

- The order of the digits in a code can be changed, provided the order of column in the check matrix
is changed in the same way Codes which result
tom such re-ordering are equivalent to the origin from such re-ordering are equivalent to the original
code.
The reason for these being "suitable" factors goes
beyond the mathematical depth of this article. polynomial $\mathrm{X}^{10}+\mathrm{X}^{9}+\mathrm{X}^{7}+\bar{X}^{4}+\mathrm{X}^{2}+1$ so that the generator matrix consists of the
binary series corresponding to this plus binary series co
its four shifts:
$\mathrm{G}=\left|\begin{array}{lllllllllllllll}1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right|$
If r is the degree of the composite factor, If r is the degree of the composite factor,
$k=n-r$ is the number of information digits. In this case $n=15, r=10$ and
therefore $k=5$: it is a $(15,5,3)$ code. For a code correcting t errors we must take t irreducible polynomials; and since each irreducible factor may in principle be of degree m when $n=2^{m}-1$, there may be at most mt check digits. But it may be
possible to use a factor of less degree, like the third factor in this example, so that the number of check digits is less than $m t$. It depends how $\mathrm{X}^{n}-1$ factor - ises.
length $n=2^{\mathrm{m}}-1$, ditat BCH codes of $t=[n / 4]$, , where the square bracket mean "the nearest integer less than", are exactly related to Hadamard Hadamard matrices can be used as the basis of the much-discussed Walsh basis of the much-discussed Walsh
functions. It follows from the orthogonal property of the rows of Hadamard matrices that in this particular case having the maximum possible number of code members for the given length and distance ${ }^{5}$.

Implementation of BCH codes BCH codes are cyclic, i.e. if one has a key pattern of digits to represent 2°, then 2^{x} is represented by the same pattern shifted x places. One can (matrix) in which each row is of length n and the number of rows is equal to the number of information digits in the code word. As a simple example, the $(7,4,1)$ matrix G. represented by a gerator matrix G :

$$
G=\left|\begin{array}{llllllll}
1 & 0 & 1 & 1 & 0 & 0 & 0 & 2^{0} \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 2^{1} \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 2^{2} \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 2^{3}
\end{array}\right|
$$

Then if the 4 -digit binary number 1101 (decimal 13) is to be encoded, take the first, third and fourth rows of G, corresponding to $2^{0}, 2^{2}$ and 2^{3}, and add them
together digit by digit modulo 2 (without carries) to give 100101 as the coded
version of 1101 . Note that the code can version of 1101 . Note that the code can
be considered to be based on the polybe considered to be based on the poly-
nomial $1+x^{2}+x^{3}$ and its multiples by x, x^{2}, x^{3} and the number to be encoded is similarly represented by $1+x+x^{3}$; then the encoding operation is equivalent to valent of any binary message by the

WIRELESS WORLD, MAY 1980
fixed polynomial of the code. Decoding is by division of the received signal by
the code polynomial: an error-free signal must divide exactly and the value of any remainder indicates the nature of the error pattern. Because a division must be started at the most-significant end of a number, the signal must be sent with high-order coefficient first: e.g.
when $2^{3}+2^{2}+2^{\circ}$ is sent the train of digits moving to the right into the
transmitting encoder will look like 1011 . transmitting encoder will look like 1011 . in Fig. 2(a) will respond to a single 1 digit input by giving an output of 1 immediately, 1 after a single digit delay in the second digit place, then nothing more until 1 in the fourth place, combining to give 1011 (read from the right).
Following digits, being each in turn one place later, will give outputs (counting from the same starting point) commencing with the appropriate number of noughts. Since the patterns produced by successive input digits will overlap,
the various feeds to the output line must go through modulo- 2 adders. A practical point is that the delays are usually obtained from shift registers, of which every stage has an equal delay of one
digit period. Each stage stores one digit and on each clock beat the content of each stage is passed to the next stage in line: the original form of (binary) shift register employed a flip-flop for each stage, but a charge-coupled device is
preferable for a large number of stages With these two modifications the circuit now looks like Fig. 2(b), where each square box represents one stage of a shift register. A blank interval - a number of noughts equal to the number
of check digits in the code - must be left after each message group to allow the shift register to clear before inserting further digits.
It is a com
It is a commonplace in analogue working that any operation can be in-
verted by placing the operator in the feedback path around an operational amplifier, e.g. the inversion from differentiation to integration. In the same way a digital operation can be inverted forward; and Fig. 3 shows the dividing circuit corresponding to the multiplying circuit of Fig. 2(b). The output is zero for a number of shifts equal to the number of check digits, followed by the quotient
which in the absence of transmission errors would be the original message. (Full details, including a stage-by-stage comparision with algebraic long division, are given in Peterson and Welremainder is left in the shift register, which should otherwise be zero at the end of the signal. It is therefore necessary to provide some means of isper at the end of every signal blockOne method would be to transfer the whole content in parallel to another register having the same number of stages and then check out serially the

require the clocking of the information digits through a shift register, so that
corrections can be made one by one. In corrections can be made one by one. In
communication systems the insertion of a further delay of one word time is not usually important: it does not affect the communication rate. But such delay is
not tolerable in a computer which not tolerable in a computer which
handles all digits in parallel, e.g. in reading information out from a random-access memory. So a different form of majority logic decoding, was proposed in the early days of semi-
conductor memories ${ }^{6}$ and it relates to memories in which each digit of a word is stored in a separate 1.s.i. plane. Now it is difficult to ensure perfection in every cell of a 1.s.i. plane, but unlikely that
faulty cells will occur in the same posifaulty cells will occur in the same posi-
tion in several planes of the stack Therefore it is assumed that any given word (digit position in the planes) may have only a small number of errors. In order to avoid delay in read-out, the code is designed so that each digit in the
word can be obtained immediately by majority vote of a group of digits read out from certain memory planes and the digits of these majority groups, consisting partly of information digits and
partly of check digits, are interleaved and shared in such a way that the total number of memory planes need not be unduly increased. Particular examples for a 25 -bit error-free output are (a) Single-error-correcting (best out of (b) Double-error-correc ecting (best out of (c) Triple-error-correcting (best out of seven voting) 55 planes.
Figure 4 shows how th
Figure 4 shows how this works for the first output bit b_{0} in the case of a
single-error correcting code which has a total of 35 planes, 25 information digits d_{0} to d_{24} plus 10 check digits C_{1} to C_{10} The elements M are the majority-logic gates, the output of which will agree
with any two similar inputs (or all three if alike). It would not be true to say that the correct output is instantaneous on the computer time scale, since two suc cessive gates are involved; but the delay in a gate is normally small compared small compared with the n digit periods of a serial word.

Burst errors

The codes which have been mentioned so far are concerned with random er rors, and where provision must be made for several errors in a block the number of possible error patterns is large and the code correspondingly complicated: an example is the $(15,5,3)$ BCH code
which for $0,1,2$ or 3 errors in a block of which for $0,1,2$ or 3 errors in a block of
15 has 576 different error patterns and uses 10 check digits to discriminate between them. In contract, if it were would be grouped together as a burst of 1,2 or 3 digits the number of possible error patterns would be 15 for a single

4
burstof $\mid 3$,making atotal of 43 (includin he no-error case). The first cyclic burst-error-correcting codes, due to P.
Fire, needed $3 b-1$ check digits for bursts of length up to b, but later codes
listed by Lucky, Salz and Weldon ${ }^{7}$ are better. Peterson and Weldon quote on peter. Peterson and weldon quote on recting bursts up to length 3 with only 6 check digits, as against 10 or 3 random errors. In fact the rule is that a code capable of detecting bursts up to length
b needs precisely b check digits but a code for correcting such bursts needs at least $2 b$ check digits. Codes using exactly $2 b$ check digits are known for ponding values of b of $2,3,5,6$ and 8 ; and a few more check digits are re quired for longer codes. (But the longer codes cited by Peterson and Weldon have mostly fairly small values of b The mathemati he construction of these cyclic burst-error-correcting codes are very similar to those of the BCH codes. For example do length 3 can be constructed from the pattern 111100100000000 which is taken to be 2^{8}, and its 8 righ hifts which are taken to be the powers cimal number 409 , which is $2^{8}+2^{7}+2^{4}$ $+2^{3}+2^{0}$, encodes as

100000110100001
There may be a requirement to corect both random and burst errors. It is often said that random errors are typical of radio communication, as a receiver and atmospherics; but bursts are typical of land-line circuits, as a
esult of intermittent contacts in witching systems or interference from ower lines. But clearly this is an over re using higher and higner trequencles re using higher and higher trequencles, to say nothing of wave guides and
optical fibres. Then one device to avoid special measures for the correction of burst errors as well as random errors is to scramble the order of digits before transmission and unscramble them at the receiver will break up any bursts into scattered errors which can be dealt with by a code for random errors. Howver, the whole point of burst-error correcting codes is that for a given
number of check digits they can deal with more errors in a burst than scattered at random; so the scrambling hould extend over more than one block so that, for example, a burst of 6 errors
in one block length during transmission in one block length during transmission blocks after "unscrambling" in the receiver.
Error-correcting and error-detecting codes constitute a vast subject, with special purposes. This article makes no pretence of reviewing the subject: it aims merely to explain some of the underlying principles with illustrative examples. The subject is formidably content to use existing codes rather than attempt to design codes for themselves; but even to list all existing codes with their properties would be a very major undertaking. Most of them can be Weldon ${ }^{4}$ but there are always a few which have been developed since the publication of a book. Fortunately th
sic codes such as BCH will serve for most purposes.
Appendix. The Golay code Golay discovered a triple-errorwith 12 information digits, which is perfectly packed. A code of length $n=23$ and capable of correcting up to 3 random errors will have to be able to dis-
tinguish between $1+23+\binom{\frac{\pi}{3}}{2}+\binom{\frac{\pi}{3}}{3}$ error patterns. The binomial coefficients evaluate to 253 and 1771 so that the whole series sums to 2048, which is exactly 2^{11}; and so with 11 check digits (and therefore 12 information digits) the code is perfectly packed. This Golay
$(23,12,3)$ code is the only binary code capable of correcting more than one error which is perfectly packed. A cyclic code which is equivalent to the Golay
code can be developed from the following sequence and its eleven shifts:10101110001100000000000

References

1. Hamming, R. W., Error detecting and error correcting codes. Be
vol. 29, pp $147-160($ (1960)
2. Golay, Mp. J., Notes on digital coding, Proc.
Inst. Rad. Engr., vol. 37 p. 657 (1949) Inst. Rad. Engr., vol. 37 p. 657 (1949) Tietääainen, A., On the nonexistence of
perfect codes over finite fields. SIAM J. Appl. Math., vol. 24 pp $88-96$ (1973)
3. Peterson, W. W. and Weldon, E. ..., Error
Correcting Codes. The M.I. Press. Correcting Codes. The M.I.T. P
(Cambridge, Massachussets, 1972) . Bell, D.A. and Laxton, R.. Some BCH codes are optimum. Electronics Letters, vol. 11 pp 296-297.(1975)
Hsiao, M.Y., Bossem, D.C. and Chiem, R. T. Orthogonal Latin square codes. I. B. M. Journ R\&D, vol. 14, pp 390-394s(1970)
Lucky, R. W., Salz. J. and Weldon, E.
Lucky, R. W., Salz. J. and Weldon, E. J.
Principles of Data Communication, Principles of Data Commun
McGraw Hill (New York, 1968)

Periphonic sound

continued from page 50

early tetrahedral array (besides its awkwardness) was that these two energy vector localizations show that with the tetrahedral array sounds at high frequencies are pulled toward the oudspeakers.
Requirements for coincidence of ocalizations according to the two main zon's diametric decoder theorem, which says that
all loudspeakers must be the same distance from the centr

- speakers must be diametrically
the sum of two signals fed to a pair uust be the same for all pairs
Incidentally, Gerzon has also shown hat such layouts can be fed by $p+1$ seaker pairs, so four speakers need hree channels, six speakers need four hannels.) One of the most convenien peaker array that meets thes equirements is a birectangular type stereo speaker placement. Speakers are t the corners of two rectangles, one orizontal, one vertical. This was the rrangement used in the recent AES
demonstration which produced a very satisfying result, the loudspeakers being would hope. The images were not so sharp as perhaps one is accustomed to with fewer loudspeakers, but nevertheess well fixed. The demonstrator remark that what is lost in image preciout. Switching to the horizontal rect angle made the sound less compelling and the reversion to "full sphere" sound was distinctly more satisfying.
With the horizontal type of ambisonic ecoder it is not possible to achieve stability. In fact, averaged over all directions, it has been shown that the alue cannot exceed 0.707 . But it is possible to increase the value in some xpense of others (0.6 left-right). Two channel decorders are worse in this espect with a maximum average of 0.5 giving poor image stability, though it is aid that judicious distribution around extent. With spherical reproduction the maximum average value is 0.58 ; and it is rgued that the decoder shelf filter ust therefore be carefully optimized.

BBC's data company will link with

Europe-wide information service

In order to exploit commercially its large
store of information, which includes 24 mil on press cuttings from British national and rovincial newspapers as well as complete collections of news bulletins broadcast on rdio, tv and external services, the BBC ha set up
Data.
The new company is an information pro vider for Prestel International and is cur rently discussing, with a number of othe
rganizations, ways of making $B B C$ infor ation available in machine-readable form
hat the company will also link up with rovider (see as a "host" informatio sue) although the precise interface metho has not yet been decided.
Mr Hewlett expects BBC Data's income to be "substantial" after about three years an
he next major move will be a deal with he next major move will be a deal with
computer services "bureau" whose equip ment will be used as a host for the electronic versions of the BBC 's files. Informatio omer contacting the bureau via compute rminals accessed by telephone

Exhibitions, courses and conferences
Breadboard ' 80 will be held at the Royal Horticultural Halls, Elverton St, West 30, 1980. Opening times have been changed to read Wednesday 26,10 a.m. to 6 p.m., Thurs am. to 6 p . m . and Sunday 30,10 a.m. to 10a.m.
lectronic Test and Measuring Instrumenta ion '80 will be held at Wythenshawe Forum Manchester, April 22 to 24th 1980 . Full detail re available from Trident Internationa ock, Devon.

The S.E. Asia 3rd Biennial Internationa Exhibition of Electrical and Electronic En ingapore from 21 to 25 October 1980. Inter Ltd, 834, 8th Floor, World Trade Centre Maritime Square, Singapore 0409.
Cambridge Microcomputers are offering a Cambridge Microcomputers are offering a
series of one-day courses under the general title of "Practical Introduction To Micro rocessors." Each course costs $£ 50$ (plus
va.t.) for early courses (22 April, 21 May, 18 v.a.t.) for early courses (22 April, 21 May, 18
June, 30 July) with later courses (September
ut the opportunity for directiona rade-offs is obviously greater, and ypical choice would be 0.69 front-back 0.58 left-right, 0.39 up-down. Because of this the shelf filters of an erical or periphoni decoder. (Shelf filters allow differen matrix coefficients to be used at low and high frequencies and provide a control ed transition from one to the other.)
or instance the ratio of 1.f. to h.f shelf-filter gains for horizontal-type ecoders is $0: 1.76$ (in dB) for the W signal and $0:-1.25$ for the X and Y periphonic decoder the gains are $0: 3$ fo W , and 1.76:0 for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ signals. Pro uction periphonic decoders would most certainly contain switchable helf-filtering but the day that fou mbisonic decoders will need some teration!
For periphony to be judged in effec iveness against horizontal system perhaps what is needed is a statistica compared with stereo and two and hree-channel horizontal surround sys ems. It was eight years after the intro uction of the first quadraphonic sur ound system before preference tests the square speaker array had a rating o $+0.9,+0.5$ and +0.3 for non-experts udio enthusiasts and acoustic engin "slightly better"' where 1.0 mean stereo. Little wonder it didn't catch on?

December 1980) costing $£ 55$ per day and five-day course on m.p.u.-based systems costing $£ 240$ plus v.a.t.,. running from March
to July 1980 . Further details are available Jom Cambridge Microcomputers Ltd, Mil on Rd, Cambridge CB4 4BN

A series of lectures and seminars dealing eld at the South-West Herts Teacher Centre, Tolpit's Lane, Watford. It will be run y the GEC-Marconi Group and a teacher coni House, Chelmsford CM1 1 PL.

Massive report on GaAs is dubious
report written by Gene Hnatek, quoted as noted US authority on integrated circuit echnology" by Infotech, and which is said to consist of 650 pages, priced at $£ 150$, has been dismissed by Dr Cyril Hilsum, a a eading UK
expert on gallium arsenide applications, as "melodramatic."
The report maintains that GaAs device
Tue to their increased ue to their increased switching speed, wil "rapidy replace the silicon chip," but D annot compete with silicon on an economic basis and GaAs will be used only where its properties make it a sensible choice.
properties make it a sensible choice.
 .
 $-$

[^3]原

$$
5
$$

$$
41
$$

$$
\because
$$

$$
1
$$

15V $1 / 2 \mathrm{~A}$ regulator

Although cheap and general purpose components are used throughout, this temperature stability. Output resistance stypically $20 \mu \Omega$ at low frequercies and unlike conventional regulators wher p-amp output, only a few hundre milliVolts are required across the series-pass transistor to maintain regulation. The circuit can be built for negative regulation by using n-p-n f the 741. Fold-back current limiting is included to limit the maximum dissipation to 4 W . The 3 k 3 resistor allows the output stage of the 741 to turn off when no current is being drawn, and the 220Ω ent from turning the power transistor on. The diode and $470 \mathrm{k} \Omega$ resistor allow tart-up and the $0.1 \mu \mathrm{~F}$ capacitor mproves the response to sudde put current.

Brinsley
Notts.

High-frequency doubling with c.m.o.s.

High-frequency doubling can be achieved by using the propagation delay of c.m.o.s. together with exclusive OR gating. The circuit shows an oscillator operating at 1.6 MHz , and an exclusive OR gate fed with the oscillator output Propagation delay and delayed depends on $V_{D D}$ and the load capacitance, but for a 7.5 V supply and a load capacitance of 50 pF , the delay for each buffer is about 34ns. Therefore, the total difference between the two signals is 170 ns , which produces a 3.2 MHz output with an almost equal mark-to-space ratio.
D. J. Greenland

Cambridge

Simple manual-reset latch

One 4001 can provide a latch that will urn off but will not turn on again unt manually reset. Gates a and b togeth with two resistors low at the input causes the output of gate a to go high and the output of gate to go high which then inhibits th output of gate b after it has gone low. power supply to discharge C_{1}, or replacing C_{1} with a push-to-make
witch for manual reset. If the capacitor is used it must be large enough to ensAre that the input goes high before point point B and $1 \mathrm{M} \Omega$ resistor connected to 0 V , the circuit will follow the input Resistors R_{1} and R_{2} can be omitted if the atch is driven by logic and noise is not problem.
Guernsey
Channel Isles,

Variable phase all-pass

 filterThis all-pass filter offered constant amplitude, a distortion content of less han 0.1% for a $1 V$ r.m.s. output, and a sistors $\mathrm{Tr}_{1}, \mathrm{Tr}_{2}$ and Tr_{3} form a 'low output-impedance phase-splitter which drives a CR network. Transistors Tr_{4} and Tr_{5} form a buffer stage, and the 1 k gate resistor prevents spurious oscilla suitable value for C , the phase of a waveform can be varied from 0 to nearly 180° or, by reversing C and R, from 180 to near 0 . The graph shows the normalized all-pass T. G. Izatt

Preston Polytechnic
and
Salford University

Multi-channel voltmeter with tv display

This voltmeter provides up to 25 channels and displays them as horizontal bars on a television screen. A scale is provided by an $8 \times$ line-frequency square wave, gated as a video signal between adjacent bars. The circuit.
comprises an integrator which ramps comprises an integrator which ramps
from 0 to $1 V$ in $40 \mu \mathrm{~s}$ and is reset to slightly below 0 V at each line sync., pulse. The input signal is gated by one or more 4051 analogue multiplexers,
depending depending on the number of channels whose remaining input is connected to the integrator. When the integrator output equals the input signal, the video output is switched from white to black The sync. timing chain consists of a
1 MHz crystal oscillator, a 4024 and 4518 which provide a divide-by-64 for line sync. ($15,625 \mathrm{~Hz}$) and a second 4024 provides a divide-by- 320 for frame sync.
$(48.8 \mathrm{~Hz})$ (48.8 Hz).
An AF139 modulator is shown, but
the circuit can be modified to drive the circuit can be modified to drive one
of the commercial modulators now available. The transistor is housed in a small tin box and the $10 \mathrm{k} \Omega$ preset is adjusted to zero the display on a con-
venient scale point close to the left of the screen. The $100 \mathrm{k} \Omega$ preset is adjusted with a IV input to set the display on the tenth scale point. These adjustments should be rechecked because there is
some interaction between the controls some interaction between the controls. centre zero.
A similar circuit, but without the scale and input multiplexing, can be used as a wobbulator display or a simple spectrum analyzer. The drive for the
v.c.os can be generated from a second integrator, reset only on the frame sync.

pulse. For 25 channels, four 4051 i.cs are enabled in turn by a 1 -of- 4 decoder driven by a divide-by-32 and 404 on the except frame sync., are increased in frequency four times.
J. D. Owen

Dyfed

C.m.o.s. 60 kHz receiver

One c.m.o.s. NAND gate i.c. can be used as a low frequency receiver as shown.
All of the gates are connected as inverters and the first three operate in the linear mode with 100% feed-back. Gate 4 and Tr_{1} provide amplification and a t.t.l. interface. The input to gate 4 is biased so that; with no carrier, Tr_{1} is turned off
and the output is high. With the carrier on, negative half-cycles at the output of gate 3 partially discharge C_{5} via D_{1} and gain and d.c. input-output voltage varies with different packages, three 4011 AE i.cs functioned satisfactorily
with R_{3} adjusted to give a carrier-off

Aerial
on $80 \times 7 / 160$ ler ferite

voltage of 0.3 V at the base of Tr_{1}. With a correctly tuned aerial, the only critical components are $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{5}. The value of a yellow-coded i.f. transformer. G. Jackson Greigiau
Cardiff

Model TCSU1

Name Adress

WIRELESS WORLD, MAY 1980

response. Interchangeable slide-on bits from

miniature CTC ($35-40$ watt) iron or $X T C$ C (50watt) TCSU1 solder 1 ng

* VAT + P\&P as shown in brackets C

Is this any way

 to treat an $\mathbf{6 8 9}$ multimeter?In the rough world of industrial electronics, even a precision test
instrument can get treated like dirt. You need all the ruggedness and dependability you can get in a DMM Youll find the more in the Fluke line of low-cost DMM's. Our DMM's have been
dropped from towers dropped from towers, stepped on, and
run over by construction run over by construction equipment.
And they've survived because we neve cut corners on quality, even on our lowest-priced, six-function Moder
8022A Troubleshooter at £89. Take a close look at a low-cost
DMM from Fluke and youll notice DMM from Fluke and youll notice
tough, lightweight construction that
stands up to the hard knocks of life.

Sturdy internal design and high-impact, flame-retardant shells make these units practically
indestructible. Right off the shelf, they meet or exceed severe military
shock/vibration tests. shock/vibration tests.
Even our LCD's are protected by
cast-tempered plastic shields. We use rugged CMOS LSI circuitry for

components to protection against
overloading accidental inputs and overloading, accidental inputs and
operator errors. We go to these lengths with all our
low-cost DMM's to make sure the low-cost DMM's to make sure they are
genuine price/performance values. You genuine price/performance values. You
can count on that. Because, that's can count on that. Because,
what leadership is all about. For more facts on DMM reliability
and where to find it, call (0923) and where to find it, call (0923) 40511; use the coupon below:
or contact your Fluke sales office or contact your Fl
or representative.

FLUKK

Plutar

WW - 034 FOR FURTHER DETAILS

Why does an electron have inertia?

Give me an electron and I can move the world
by T. B. Tang, M.Tech., Ph.D. Darwin College, Cambridge

'Local Group' of about 30 galaxies, which, together with more galactic groups and chains, forms what has been recognised as the Virgo Supercluster. This local supercluster, containing 10^{2} to 10^{3} galaxies, is apparently again flat-
tened. Well, from sky surveys we find at least 10^{10} other galaxies further out in the Universe!
From the measured degree of isotropy (to 3 parts in 10^{4}) of the 2.7 K cosmic radiation, it has been calculated ${ }^{10}$ that faster than once in 10^{19} years. The placing of this lower limit on the rotational period, 10^{9} times the age of the Universe, is a strong, abeit indirect, observational support for the Mach

Second Law of motion
Let us now devise a simple mathematical expression for the Machian interaction which is experienced whenever matter accelerates, and explore the consequences. Following Einstein (see for example his book The Meaning of
Relativity) we assume that the interaction is gravitational in nature, so that its strength between one gravitational mass (m) and another (M) depends on and will have the form and will have the form
where a is the relative acceleration r the distance between m and $M . F$ has to fall off as the first power of r, no faster and no slower, else strange things would happen. The velocky of light cis give the right-hand side the dimension of a force. The form of equation (1) will be justified by its predictions.
F as specified above is Newtonian in
the sense that it is instan the sense that it is instantaneous inter-
action. However, it was shown by Milne action. However, it was shown by Miln
and McCrea, in the 1930s, that Newto nian cosmologies lead to results which are formally identical to those from general relativity models, once an in That is the Universe is considered as closed sphere in Euclidean space, with a finite radius, the test particle unde study being put at its geometrical cen tre. With the use of this convention in mathematically difficult (and perhaps

82
even pathological) relativistic models can be avoided, and at the same time
difficulties such as the existence of infinite gravitational potential in an unbounded universe disappear. In this way, the pull on m which is being
accelerated with respect to other matter in the 'island universe' can be summed, in the simplest (scalar) manner, as
$F_{m}=\left(\mathrm{G} / \mathrm{c}^{2}\right) m(-a) \bar{f}_{0}^{\mathrm{cA}^{\mathrm{A}}}$ $4 \pi r^{2} r^{-1} d r$
$=-m a\left(2 \pi G \rho \bar{A}^{2}\right)$
(2)
in which ρ is the mean density of the
Universe, whose 'radius' is its present age A multiplied by c. Checking with experimental and observational data we
now discover the remarkable fact that, now discover the remarkable fact that, sionless number
$2 \pi \mathrm{GpA}^{2}=1$

(3)
to

Hence (2) very probably reduces to
$\mathrm{F}_{m}=-m a$. Since the applied force $F_{m}=-m a$. Since the applied force
$F=-F_{m}$, Newton's Second Law is at
once derived.

Life and gravitation
There are in cosmology a number of empirically found to hold but none of which can be fitted into the structure of known physics. Equation (3) is one of them but, as has just been shown, turns
out to be explainable by the Mach Principle. They are of imposing importance ciple. They are of imposing importance
to us, speculating or otherwise (see last sentence of this paragraph). Based on some of the other cosmological coincidences, Dirac has proposed models, in a series of papers in Pro-ceedings of the Royal Society the first of which was in 1938 and the latest in 1979. However, we shall have the space to say,
no more about the numerical no more about the numerical validity of many of them is a prerequisite for our ability to live in the Universe 11,9 !
To continue with the discussion on the Machian theory, we point out that it
can reproduce all the dynamic effect pertaining to co-ordinate acceleration in Newtonian mechanics. The case of inear acceleration has been dealt with in the above. In circular motion, cenform come out when F_{m}, acting on m which is 'non-rotating' ' by 'rotating' background matter, is summed in the same manner. This should hardly be
surprising, since these forces are consesurprising, since these forces are consecan be derived via F_{n}
Most interestingly, it has been claimed ${ }^{12}$ that the force described by Newton's Law of universal gravitation
is in fact but a manifestation of F is in fact but a manifestation of F_{m}. The execute implusive motions ('zitterbewegung' of electrons etc.) and are therefore continuously accelerating; the resulting Machian interaction bet-
ween their constituents is, it was argued, the force traditionally called again being ne
$\Delta m / m=1 / N^{1 / 2}$
(6)

Substituting for N and eliminating Δm between (5) and (6) we obtain $m \leqslant\left[\left(h^{2} / c\right)_{\rho} A\right]^{1 / 3}$
which, on plugging in the numerical values, gives $10^{-27} \mathrm{~g}$ and is a correct -order of magnitude! The degree of closeness is astonishing in view of the
enormous range of magnitudes for different combinations of the factors appearing in (7). Heavier particles should be unstable, which indeed is the case. A zero rest mass (and correspondingly a vanishing Δm) is, of course, also consistent with (5) and (6); this is the
case of the other two types of stable particles, namely the photon and the neutrino family
If the Mach Principle can be generalised, it may be conceived as that all local
properties are related to the global condition of the Universe and as such are ultimately changeable: that a part, however small, must not be regarded in
isolation from
the whole. This means isolation from the whole. This means
that any collection of particles conthat any collection of particles con
stitutes an open system, for which stitutes an open system, for which
dynamic equilibrium will always be accidental rather than the normal state, just as a living organism or a biosphere is. The Principle itself is speculative,
enjoying as yet no direct empirical enjoying as yet no direct empirical
evidence, but we have sketched here an elementary scheme for the interaction it visualises. Surprisingly, the resulting simple-minded theory appears capable of explaining, in a manner, some of the known facts concerning inertial mass
Are you sufficiently impressed to be Are you sufficiently impressed to be-
lieve that you now understand more about what actually happens to the electron beam in the oscilloscope, and why one should wear a seat belt?

References

1. Jennison, R.C. Wireless Worli, June 1979.
2. Sciama, D.W. Mon. Not. Roy. Astron. Soc. 133, 33 (1953).
3. Dicke, R:H. Science, 129621 (1959).
4. Hoyle F. and Narlike, JV Proch
5. Hoyle, F. and Narliker, J.V. Proc. R. Soc
Lond. A A 282, 191 (1964).

Lond, A A2, M, Nuovo Cimento (Ser. 10), B 53 ,
398. (1968). ${ }^{398}$ (1968). 6. Sciama, D.W. . The Physical Foundations of
General Relativity', Doubleday, Garden City, N.Y.,. 1969 .
7. Barbour, J.B. Nuovo Cimento (Ser. 11), B 7. Barbour, J.B. Nuovo Cimento (Ser. 11), B
26, 16 (1975). 8. Eby, P.B. Lett. Nuovo Cimento, 18, 93 (1977). T.B.
9. Tang, T.B. B. Br. Interpl. Soc., 32,84 and 88 9. Tang, T.B. J. Br. Interpl Soc. 32,84 and 88
(1979) 10. Hawking, S.W. 'Confrontation of Cosmo-
logical Theories with Observational Data', logical Theories with Observational Data',
Ed. MS. Longair, I.A.U. 1974, p.283. Ed. M.S. Longair, I.A.U. 1974, p.283.
11. Carr, B.J. and Rees, M.J. Nature, 278,605
(1979). (1979). Cook, R.J. Nuovo Cimento (Ser. 11), B 35,
12. (1979). 25(1979).

WIRELESS WORLD, MAY 1980

Communication receiver design
Even before the end of the 1930s, the h.f. communications receiver could provide a high standard of performance: designs
such as the National HRO, Hallicrafters SX28, Hammarlund Super Pro and the RCA AR88 enabled operators to select
and copy extremely weak signals close up to far stronger signals, aided by good single-crystal filters and the reasonable immunity to spurious responses of single-conversion superhets having two tuned r.f. stages. Indeed many of the primarily at reducing the high cost of tuning mechanisms used in such models with their four ganged tuned circuits and with providing the additional stability and lower tuning rate needed to cope with single-sideband transmis-
sions. The gradual change from valves to transistors tended to result at first in lower standards, particularly in the reduced ability of receivers to cope with both very weak and very strong signals
without driving stages into nonwithout driving stages in to nonfilters and then "dynamic range" of the early stages of solid-state designs have tended to dominate the scene, and it is only in the past few years that all-solid-
state designs have reached and improved on the best valve designs of the fifties and sixties.
Now, however, the steady progress is
making the measurent making the measurement and evalua-
tion of receiver specifications increasingly difficult, as Wes Hayward, W7Z01 has pointed out. Such parameters as "minimum detectable signal" are easier to describe than being interpreted in different ways, and so on; furthermore many of the improvements become important only in highly competitive conditions, making little noticeable difference The limiting factors of The limiting factors of highreciprocal mixing due to noise sidebands on the h.f. oscillators; insufficient ultimate rejection of filters, particularly when actually installed in
receivers; non-linearity and sometimes non-reciprocal effects in "passive" components such as crystal filters and errite cores. For most amateurs the difference between a "good" and a involve questions of "operability"; convenient controls without backlash; absence of hum; ability (missing from many current models) to be able to turn the a.g.c. off; good audio performance,
etc. Perhaps what we are seeking is the good electronics of the best 1980 models
combined
mechanical designs the excellent Unfortunately while electronics still get relatively cheaper, mechanical excel-

Winter Sporadic E

Recently it was suggested (WoAR March) that while American amateurs recognise the existence of a winter Sporadic E season, this did not appear to be the case in Europe. John Branegan, reports that he has observed such a season each year since 1977. He uses sensitive equipment including a tunable Eddystone 770 R v.h.f. receiver, various pre-amplifiers and converters feeding a Yaesu FRG, a and retander 3 -element Yagi aerials.
He finds the winter Sporadic E season usually starts about Christmas and lasts until about the first week in February followed by several days without any). During winter, SpE signals are heard up to about 53 MHz and on about one-inthree occasions to 70 MHz ; very rarely to about 90 MHz ; no event extending to tacts with VE1AVX during the 50 MHz F2 layer openings, he believes that winter SpE occurs on the same days at the same local time in Eastern Canada. As an example of a typical winter SpE
event he provides a clear picture of Norwegian tv (48.25 MHz) taken on January 21 this year. Curiously, he does not find that the range of SpE signals changes in the manner that has been suggested as likely due to the gradual shears, but remains in the range bracket of 650 to 1250 miles throughout the events.
GM41
GM41HJ is convinced that there are add to our meagre understanding of add to our meagre understanding of
Sporadic E, including the differing world patterns (SpE conditions are
almost a regular daily event in tropical
countries such as India).
EMC regulatio

increasing

German amateurs are worried at some aspects of new "electromagnetic compatibility" regulations which are due to be intraduced there in July 1981 and which could present major problems to transmitters in residential areas. While a welcome feature of these regulations. is the setting of a minimum limit to the strength of broadcast transmissions
that are regarded as protected against interference, ranging from 0.1 to 0.5
mV / m for v.h.f. and television to
$\mathrm{lmV} / \mathrm{m}$ for m.f. and l.f. $1 \mathrm{mV} / \mathrm{m}$ for m.f. and l.f. transmissions, they also specify the standard of
"immunity" to very strong local signals immunity" to very strong local signals withstand, implying that listeners and viewers can expect to be protected against any signals which are stronger. The limits vary from $3 \mathrm{~V} / \mathrm{m}$ to only
$0.5 \mathrm{~V} / \mathrm{m}$ between 47 and 108 MHz and as $0.5 \mathrm{~V} / \mathrm{m}$ between 47 and 108 MHz and as
low as $0.2 \mathrm{~V} / \mathrm{m}$ on intermediate frequencies of the receiver. It has been shown that field strengths of $15 \mathrm{~V} / \mathrm{m}$ can be encountered at distances of about 12 m from amateur transmitting aerials Germany.
Regulations introduced early in 1980
in Swita in Switzerland appear similarly to set a limit of $1 V / \mathrm{m}$ to receiver immunity, with the possibility that the amater
station may be held to blame for interference arising from higher signal levels. The subject is also being considered with a view to EEC regulations. The German e.m.c. regulations are not concer than radio and tv receivers and do not cover audio amplifiers, tape recorders or electronic organs.

In brief

Jeremy Royle is reported to be developing new techniques for the trans-
mission of slow-scan tv pictures in colmission of slow-scan tv pictures in col-
our ... Amateur stations in our ... Amateur stations in the USSR
are reported to be increasing by about 8 to 12 per cent annually and by early 1979 there were 30,034 stations of which 3629 were "club" stations, 17,234 individual h.f. stations and 911 v.h.f. licences, areas numbers of stations remain stag nant due to insufficient attention being given to the development of amateur radio, especially stations for collective ("club") use ... Swiss amateur licences 2681 at the end of $1979 \ldots$ The number of amateur licences in West Germany, where for a long time the totals were roughly comparable with the UK, now
seem to have forged decisiver seem to have forged decisively ahead, Class. C (v.h.f. only) licences. There are 1305 club stations (including 208 repeaters) and 2090 "YL" and "XYL" icensees... The annual Radio \& ElecRadio Societies Association will be held at Belle Vue, Manchester, on April 27, with numerous contests, inter-club quiz. Morse code challenge, 145.550 MHz and 433.200 MHz talk-in stations
(GB4NRS G8NRS/A)... The RSGB (GB4NRS G8NRS/A)... The RSGB at Alexandra Palace on May 9 and 10 .
PAT HAWKER, G3VA

Outlook for short-wave broadcasting

Meagre increase of frequency allocations gained from WARC 79

Most readers will have seen reports
about the 1979 World Administrative about the 1979 World Administrative
Radio Conference (WARC 79) in this journal, and will know that short-wave radio stations all over the world attach great importance to its results. The the re-allocation of the radiö spectrum (February issue pp. 46-48, March issue pp. 72-74). The allocations are to be found in Article V of the Radio Regulations, a book which contains all intern-
ational agreements on the use of the ational agreements on the use of the
radio reference for radio users all over the world. Article V was revised previously in 1959. Since then, however, there have: been significant shifts in the usage of developments, such as the opening-up of satellite communications, but also resulting from other world developments like the new frequency requirements of nations which have gained
their independence since 1959. These frequency requirements of the emergent nations affect all fields of communications and especially those bands which were already heavily loaded, or even congested, in 1959.

Increased demand
The most marked increase in the demand for radio spectrum space in the past twenty years has taken place in the fields of maritime mobile communica-
tions and short-wave radio broadcasting. In Band 2, the v.h.f./f.m. band, agreement was reached at WARC 79 on an expansion in Regions 1 and 3 to 108 MHz. A planning conference, to be held the channel allocations in this band for each area. Before this can take place, however, non-broadcasting services which still make use of the band will have to be relocated in other frequency
ranges. Medium-wave broadcasting has also grown considerably, but a frequency plan for the medium- and long-wave bands was adopted at the
ITU conference on m.f./If. broadcasITU conference on m.f./I.f. broadcasting in 1974/75 (January 1976 issue, p.
42) and its results were accepted (with some minor changes) at WARC 79. The frequency range between 6 and 30 MHz is suitable for world-wide communications without the use of this h.f. part of the spectrum important
to various users - mobile communications on land, at sea or in the air, fixed
communications between points on earth, radio amateurs, and broadcasting, to mention a few. In the past twenty years the occupation of various bands in this range has changed. Exover the world in recent years, has shown that the number of stations in the fixed bands (which occupy about 48% of the available short-wave spec-
trum) has considerably decreased It trum) has considerably decreased. It
has also shown that the number of stations inside the allocated short-wave broadcasting bands has grown to intolerable levels.
The decrease of band loading in the fixed bands was due partly to the deve-
lopment of satellite communications, which proved to be more reliable to the fixed user and is able to handle all traffic without interference. Apart from this measured effect, however, many young
nations still feel the need for frequencies in the fixed bands, to establish and maintain domestic or international radio communications (telephony, commercial traffic, data transmission). Many short-wave broadcasting or-
ganizations, after studying the results of monitoring the fixed bands and looking at the gloomy situation inside the short-wave broadcasting bands, had the feeling that it would be reasonable
to re-allocate portions of the fixed to re-allocate portions of the fixed
bands for broadcasting purposes. This feeling was strengthened by the knowledge that some administrations (the official postal and telecommunication authorities of the various countries)
have permitted their short-wave broadThis situatione int endorsed by many countries who live by the intentions and rules of the Radio Regulations, was made possible by the use of an escape renders such a move possible if no interference is caused to other services which are allotted in the fixed bands. Since the broadcasting service usually replaced a fixed service of the same
'country (though at an increased bandwidth), generally no complaints from other fixed users were filed and the broadcasting service in the fixed band could thus be established.

Exclusive h.f. bands

in most countries, however, shortwave broadcasting stations have not been allowed to operate "out-of-band", because the administration is wary of
causing congestion in the fixed bands with transmissions of another kind. Most administrations felt bound by the 1959 agreement, which established certain frequency bands for the exclusive use of high frequency (short-wave) lar arrangement for the fixed bands. Mixing the two would cause precedents which would harm international interests.
At the start of WARC 79 a number of administrations had hoped to correct this situation by extending a number of
short-wave adjacent fixed bands, thereby giving all s.w. broadcasters equal opportunities to

Jim Vastenhoud, author of this article, is the deputy director of en gineering services of Radio Neder land, the Dutch world broadcasting in
organization. He joined them in organization. He joined them in
1953, transferred to Dutch television in 1962 but returned to Radio Nederland in 1969. His present work is on engineering projects and the
co-ordination of frequencies for co-ordination of frequencies
short-wave occasionally takes part in BBC "World Radio Club" broadcasts from London.

WIRELESS WORLD. MAY 1980
establish a good service while doing
away with the privileged those broadcasters who are already operating in the fixed bands. It was no expected that all the administrations concerned would co-operate with such sidered to be in the minority. However, things turned out dif ferently. The non-aligned countries which now have a voting majority in partly convinced of the reasonableness of the international broadcasters' requirements. Moreover, they were concerned about the loss of fixed frequencies, which are so vital to them
Meetings held in the important wor king group 5BB, which dealt with the frequency range between 3.9 and 27.5 MHz , were difficult and progress was slow. The proposals, which obtained a majority in the group, did account for broadcasting bands between 9 and 22 MHz , or less than half the extension needed to operate short-wave broad casts with a reasonable chance of satis agreed on by Committee 5 and the Plenary Assembly, are given below.

\section*{Band Old frequency Now frequenc
 (m) range (MHz) $\mathbf{r a n g e}$ (MHz)
 | 75 m | 3.950-4.000* | 3.950-4.000 |
| :---: | :---: | :---: |
| 49 m | 5.950-6.200 | 5.950-6.200 |
| 41 m | 7.100-7.300† | 7.100-7.300 |
| 31 m | 9.500-9.775 | 9.500-9.900 |
| 25 m | 11.700-11.975 | 11.650-12.050 |
| 22 m | | 13.600-13.800 |
| 19 m | 15.100-15.450 | 15.100-15.600 |
| 16 m | 17.700-17.900 | 17.550-17.9 |
| | | | $\begin{array}{lll}16 \mathrm{~m} & 17.700-17.900 & 17.550-17.900 \\ 13 \mathrm{~m} & 21.450-21750 & 21.550\end{array}$}

Not allocated in Region $2.3900-4000 \mathrm{kHz}$ allotte in Region 3
$\$$ Not allocated for broadcasting in Region 2 (th

The outcome must be considered "meagre" by many administrations and short-wave broadcasters in the western world, who have put so much work into measuring and evaluating data and calculating what they consider to be a very
reasonable proposal for all concerned based on technical data rather than on political motives. It is a disapproving result, which might also be ascribed to the failure of some delegates from less. appreciate the real value of the propo appreciate the real value of the propo
sals put forward and their unjustified reserve as to the good intentions behind them.
An observer at WARC 79 must have felt that some of the voting was indeed not free from political motivation. Some countries could occasionally be seen grouping together, and the influence o certain leaders was sometimes very
evident. But this is all part of the modern set-up where each country has
one vote only, regardless of the size its population.
One of the important decisions take at the conference was to set in motion the preparation for a new technica planning conference for the h.f. broad casting bands, will be held in two sessions, probably in 1982 or 1983 . The first session will establish the technical parameters to be used during the plan
ning conference. Some of the important ning conference. Some of the important
parameters are: maximum number of frequencies used for the same pro gramme to the same zone; the necessary or maximum transmitter power to be allowed; and a specification
for a single-sideband system suitable for future use. Also, the CCIR, which is the ITU's technical consultative committee for broadcasting, is to prepare and distribute extensive data on directional field strengths and transmission losses on calculating necessary protection ratios between co-channel and adjacent channel broadcasts, on frequency pre diction methods, on solar indices, and so
on.
The second session, which will be the planning conference proper, will be held 12 to 18 months after the first session. During this period all concerned will be means that there will be no technical arguments based on data of different origins or liable to different interpretations. It also means that everyone con cerned has at least the opportunity to ticipating in a world forum on h.f broadcasting, which will determine its weal and woe for the next twenty years or so.

News notes

The Australian government has authorized tv stations to go ahead with data broadcas
ting services. The announcement was made ting services. The announcement was made
by Mr T. Staley, the minister for Post and Telecommunications, who welcomed this
development as a useful addition to com development as
munity services.

A multi-track digital recording of an opera,
using the 3 M Mincom 32 -track digital mas using the
tering system, was made by Polygram durin tering system, was made by Polygram during
December 1979 and January 1980 . The recording of Wagner's four-and-a-half-hour oper "Parsifal" was performed by the Berlin
Philharmonic Orchestra and the Chorus of the Berlin Opera. Analogue tapes were also the Berin Copera. An
made of the sessions.

The first deep water optical-fibre telephone
cable, a trial 9.5 km loop, was laid by the STC cable, a trial 9.5 km loop, was laid by the STC
division of ITT, using the Post Office cableship "Iris" in Loch Fyne, on the Wes
coast of Scotland early in March. A regenerator housing with mechanical terminations
was also laid with the cable, to be equipped was also laid with the cable, to be equipped
later with the necessary regeneration equip later with the necessary regeneration equip
ment.

N OUR NEXT ISSUE

The case for

 community radioMany people are dissatisfied with the centralised nature of national broadcasting, even when it includes regional and local stations Community feeling discussion and culture could be encouraged by alternative radio. Norman McLeod assesses what could be done in the UK

'Off-resonance'
 metal detector

This newcomer to metal detecting is basically similar to the b.f.o. type but senses the search coil inductance change differently and uses the properties of a parallel-tuned circuit to obtain more information about the physical nature o the object.

What happened to analogue computers? Apart from the i.c. op-amp, analogue computing techniques seem to have been swamped by the tide of digital computers and microprocessors. This article reminds us of the basic electronic analogue techniques and of how flexible they are for modelling proposed systems.

On sale 21 May
'

tant

LC oscillators: general theory

by Peter Williams, Ph.D. Paisley College of Technology

Transistor and valve oscillators can be closely related: not in the obvious way by a direct eplacement, but with inputs and outputs interchanged. 1 a particuar network requires a reversed requires an open-circuit voltage gain of μ, then $\mu=h_{t}$. Neither the input resistance of the transistor nor the output resistance of the valve appear in the frequency and gaindetermining relationships. This is a surprising result and though exactly true only for a circuit minium number of pure reactances for oscillation with a single device is three, two of one type and the third of the opposite type. By extension, circuits may use mutual inductance and other more complex arangient to two inductive and an capicitive orvice versa.

Taking the device resistance (h_{i} for the transistor and r_{a} for the valve) into the external circuit the passive circuit becomes the general form shown, i.e. activated by an ideal voltage amplifier
 to the previous valve/transistor oscillators. The configuration is identical with the RC lag-lead
network, the basis with the related Wien and lead-lage networks of so many RC oscillators. In network, the basis with the related Wien and lead-lage networks of so many RC osciliators. In
the LC form the overall phase shift is found to be 180° at the frequency for which the reactances go into series resonance and an inverting amplifier is used. The RC circuit has zero phase shift at the frequency of maximum response and needs a two-stage amplifier for the non-inverting gain. From the standpoint of frequency stability, it is the rate-of-change of phase of the passive
retwork at the frequency of oscillation that is important. The higher this value the smaller the frequency shifts in compensating for internal amplifier phase errors or those resulting from the intermodulation via feedback distortion components.

These are quide different for the two circuits; that the LC circuit has a higher $\mathrm{d} \phi / \mathrm{d} w$ at the frequency of oscillation. Considering the RC circuit first, the two sections result in successive-
phase lags and leads. It is simplest to visualize it the second stage impedance is much higher phase lags and leads. It is simplest to visualize if the second stage impedance is much higher at which the first stage provides a 45° lag simultaneously with a 45° lead for the second stage,
 the same, viz a single frequency at which the phase shifts cancel. The $L C$ circuit depends on
resonance to obtain the necessary phase conditions. The currents in L, and L_{2}, are antiphase resonance to obtain the necessary phase conditions. The currents in $L_{\text {, and }} L_{2}$, C are antiphase
only for those frequencies at which the reactance of C exceeds that of L_{2}. The net current flow
. only for those frequencies at which the reactance of C exceeds that of L_{2}. The net current flow
can therefore become zero resulting in there being no voltage dropped across R. It is this that can therefore become zero resulting in there being no voltage dropped
allows R to vanish from the frequency and gain-determining equations.

Further inspection of the phase relationships shows that the voltages across C and L_{2} are anti-phase with $v_{v_{2}}$ greater in magnitude than v_{12}. Because, at resonance, $v_{L 2}$ is antiphase to the
drive voltage v, it is the inductor voltage in this configuration that is normally used to close the drive volage v, it is the inductor voltage in this configuration that is not an inverting amplifier. It locations of L_{2} and C are interchanged then at the same frequency the output of the voltage amplifier with voltage gain below unity is required. The new oscillator might be described as a grounded-collector (or drain or anode) oscillator but not a common-collector. This
last terminology must be avoided as there is no external signal source and hence there cannot last terminology must be avoided as there is no external signal source and hence there cannot
be a common point between input and output. The terminal that is grounded is merely a matter be a common point between input and output. The terminal that is grounded is merely a matter
of convenience, perhaps of biasing of minimizing stray capacitance or of extracting the signal;
the nature of the oscillator remains unchanged. of convenience, perhaps of biasing of minimizing

The three circuits shown simply represents shifts in ground points for the same basic scillator; L_{1} still appears between base and emitter, L, been diacter and base. The supply point is of practical importance because one factor influencing the choice of configuration will be the case of biasing. Considering the common base circuit first it can be seen that a direct (requency of oscillation. This suggests a large-value inductance (or a parallel resonant circuit!) which is not an attractive solution. This problem is not present with the other two, though each requires a bias path for base currents. .f the be bipolar trassistors are replaced by junction fets
capable of operating with $V_{G S}=0$ then a self-biasing oscillator results in each case.

THEORY

- The two forms have the passive networks similarly terminated on
the assumption that only the input resistance of the transistor and the the assumption that only the input resistance of the transistor and the cases there is a conducting path across L_{1} but not across L_{2}.
- Let $t^{L}=v_{0} / v$ for the general passive network shown. Applying The
venin's theorem to R, Z_{1}

$$
\begin{aligned}
t_{v} & =\frac{z_{3}}{z_{3}+z_{2}+\frac{z_{1} R}{z_{1}+R}} \frac{z_{1}}{z_{1}+R} \\
& =\frac{z_{1} z_{3}}{z_{1} z_{3}+z_{1} z_{2}+\left(z_{1}+z_{2}+z_{3}\right) R}
\end{aligned}
$$

For oscillation the circuit would need to be connected to an amplifier of voltage gain A_{v} so that

$$
\begin{aligned}
& A_{v} t_{v}=1 \text { at one frequency only } \\
& A_{v}=1 \cdot+\frac{Z_{2}}{Z_{3}}+\frac{R}{Z_{1} Z_{3}}\left(Z_{1}+Z_{2}+Z_{3}\right)
\end{aligned}
$$

By reciprocity, if the same network is interconnected with an ideal current amplifier of current gain A_{i} then A_{i} has to meet the same constraint.
For many oscillators the impedances are almost pure reactances i.e. $Z_{1}=\mid X_{1}, Z_{2}=1 X_{2}, Z_{3}=1 X_{3}$, where X_{1}, X_{2}, X_{3} can have either sign

$$
A_{v}=1+\frac{x_{2}}{x_{3}}-j \frac{R\left(x_{1}+x_{2}+x_{3}\right)}{x_{1} x_{3}}
$$

Equating real and imagi ary parts

$$
A_{v}=1+\frac{x_{2}}{x_{3}}
$$

$$
x_{1}+x_{2}+x_{3}=0
$$

ii) This last condition corresponds to the series resonant condition of
(ii) The constraint cannot be satisfied using three reactances of the same type as there
tive for resonance. (iii) If Ifed with a grounded-emitter (grounded-source) stage with in
verting gain then $X>x$ and they must verting gain then $X_{2}>X_{3}$ and they must be of opposite types.
(iv) To simultaneously satisty the second constraint, X_{1} must be of the same type as X_{3}.
The above are the conditions resulting from $A_{v}<0$. Other conditions
obtain for $1>A_{v}>0$ and $A_{1}>1$.

- A comparison of the related LC and RC forms shows the lead/lag back connection for the latter, since the voltages at resonance are all - Because $V_{c}+V_{12}=V_{11}=V_{0}$ and V_{12} is antiphase to $V_{c,}$, then V_{c} is
in phase with V_{0} and exceeds it i.e. $1>A>0$. For the second form, V_{12} is antiphase to the output and $\mathrm{A}^{\prime}<0$.

$$
\begin{aligned}
& \frac{x_{1}}{x_{3}}+\frac{x_{2}}{x_{3}}+1=0 \\
& \text { i.e. } \frac{x_{1}}{x_{3}}=-A_{v} \\
& x_{1}: x_{2}: x_{3}:-A_{v}: A_{v}-1: 1
\end{aligned}
$$

EXAMPLE

A bipolar transistor with $h_{\text {tominin }}$ of 50 is used with $C=500 \mathrm{pF}$ and is re.
quired to oscillate at 200 kHz . Determine suitable values for L_{1}, L_{2}
$z_{1}=j \omega L_{1} \quad Z_{3}=j \omega L_{2}$
$z_{2}=\frac{1}{j \omega c}$

The fraction of the output current flowing in $h_{i e}$ is

$$
\begin{aligned}
& i=\frac{\frac{z_{1}}{h_{i e}+z_{1}} \cdot z_{3}}{z_{3}+z_{2}+\frac{h_{i e} z_{1}}{h_{i n}+z_{1}}}\left(-h_{\left.\mathrm{he}_{\mathrm{ie}}\right)}\right) \\
& -h_{h_{\mathrm{e}}}=\left(z_{3}+z_{2}+\frac{h_{i \mathrm{ie}} z_{1}}{h_{\mathrm{ie}}+z_{1}}\right)\left(\frac{h_{\mathrm{ie}}+z_{1}}{z_{1} z_{3}}\right) \\
& =\frac{h_{10}}{z_{1} z_{3}}\left(z_{1}+z_{2}+z_{3}\right)+1+\frac{z_{2}}{z_{3}} \\
& =\frac{-h_{i e}}{\omega^{2} L_{1} L_{2}}\left(j \omega\left(L_{1}+L_{2}\right)+\frac{1}{j \omega_{c}}\right)+1-\frac{1}{\omega^{2} C L_{2}}
\end{aligned}
$$

Equating real and imaginary terms
$\omega^{2}=\frac{1}{\left(L_{1}+L_{2}\right) C}$
$-h_{\mathrm{h}_{\mathrm{f}}}=1-\frac{1}{\omega^{2} \mathrm{CL}_{2}}$
$h_{h_{6}}=\frac{\left(L_{1}+L_{2}\right) C}{L_{2} C}-1=\frac{L_{1} C}{L_{2} C}=\frac{L_{1}}{L_{2}}$
$\therefore L_{1}=50 L_{2}$
$L_{1}+L_{2}=\frac{1}{\left(2 \pi 200.10^{3}\right)^{2} 500.10^{-12}}$
$=\frac{1}{4 \pi^{2} .5} \approx 5.07 \mathrm{mH}$
$.51 \mathrm{~L}_{2}=5.07 \mathrm{mH}$
$\mathrm{L}_{2} \approx 99.4 \pi \mathrm{H}$
$\mathrm{L}_{1} \approx 4.97 \mathrm{mH}$
hio plays no part in determining the resonant frequency nor in the racircuit for any departures from the nominal conditions.

 Mixer

Extended view

We get a lot of press handouts from
the BBC and IBA. Fairly often, they are about new transmitters and relay sta tions and, to be perfectly honest about it, we don't often spare them much more
than a passing glance as they slither across our desks on their way to the news person. We think we know all about it, you see, having read so many. So I thought, too, untill I read a recent figures. Four new relay stations were to be opened, each serving as few as 500 people. One of them was to transmit to an audience of 2500 , but three of the four were for $500-600$. It struck me as
totally admirable that small communities like this weren't being ignored, so I rang the Beeb to ask for more information. (I spoke to the BBC because it was their press release, but the IBA are just as much involved.)
station can cost about $£ 40,000$, so that the smallest groups are having about £80 per person spent on them, split between BBC and IBA. In Orkney, where the groups are smaller, the cost
has been much higher - around $£ 480$ per person. In a year the two broadcasting organizations get through about £8million between them on this sort of served are getting smaller as the bigger served are getting smaller as the bigger
blank spots are eliminated. Coverage of the UK population is now 98.6% and it would need about another 100 relays ike these to get it up to 98.7.
A bewilderment of terms think it's time we tidied up the verblage a bit, because it's beginning to confuse a lot of people who aren't en gineers, but who have to know somemake decisions which could affect everyone. It isn't just beginning either -it's got some of them talking a whole of utter cobblers because they'v isunderstood definitions Industry set out to discover what use industry was making of, to pluck a word out of the air, microprocessors. The information was gathered by telephone the questions being put to managing whose main concern in life is not electronics. So, to start with, this was not a very promising approach; not many company directors could, with any circuit from a momentarily-inactive centipede. It was, in fact, a proceeding not unlike a Xingu Indian and a native The reason for the difficust
in the quantity of different descrip ions given to i.cs, some of which mean he same while others don't. Take just ronics, microchip, microprocessor solid-state, 'new technology', silicon hip, silicon microcircuit, microcom puter - how on earth can we expect a igent questions when faced with a col lection of gobbledygook like that? For example, if a non-engineer is asked how long his company has been using microchips, microelectronics, silicon microcircuits or solid-state de-
vices, he might say they've used them for ten years, say, meaning they've had mall-scale logic, linear circuits, counters and the like. The trouble is hat these words are taken to be new technology' and 'microcomputer to the lay mind, which does rather tend to mean that any survey conducted on hese lines will suspect.

Verbose video

All that exhausting trekking across the sitting room carpet every two or thre sitting room carpet every two or three button is now, of course, very much a thing of the Spartan sixties. No one with any claim to the smallest degree of
savoir vivre will countenance any more effort than a touch of the button of a remote-control unit. A quick tap on the key-pad and off goes one piece o mported, American life-style propa more mind-stretching like "Blankety Blank". You can even wind down the sound during the commercials without tiring yourself out. hat more could one ask?
A good deal, it appears, because there
are plans to produce a telly-box that not only does as it is told but tells you it's done it -it talks back. Now, personally what Ilike to see in pets, small children, wives and domestic appliances is blind to become involved in tiresome discussion with a garrulous electrical device. I can see myself becoming visibly "Match of when told to switch to "Match of the Day" the creature says Western on BBC2 which is really rather super - I firmly believe you would be much better off with that." Mind you, if you could instil some semblance of your
own tastes into a store in the machine you would be able to rely on the thing protecting you from nasty shocks. An inadvertent instruction to switch to "Top of the pops" would meet with an
and a suggestion that you read a good book for the next two hours becaus
there isn't anything worth watching. there isn't anything worth watching. Maybe there's something in the idea
after all.

Garage gurus

"Itll cost yer, squire," is a remark tha
garage mechanics learn before they progress to more advanced expressions progress to more" advanced expressions
such as "Mama". The pursed lip, sor rowful shake of the head and low whistle of disbelief are acquired much later in life, on the threshold of man
hood and around the time when they hood and around the time when they
learn how not to bat an eyelid when uttering a statement such as "That'll be a fiver, guv," after a cursory glance at the points and a quick polish of the radiator cap.
I exaggerate, of course. Garage
mechanics are quite possibly mechanics are quite possibly totally upon them in circumstances of such dire discomfort and after such long periods of lonely vigil by the roadside ill-natured and surly.
iil-natured and surly,
Having, at length, arrived on the scene, diagnosis of the trouble is usually rapid, and the fault can be put right
there or at the are fairly easy to get hold of and rea sonably quick, though expensive, to fit (I speak as one with some experience of the above scenario.
In short, on their own ground these chaps are pretty competent, on the charge often do seem to have been calculated by squaring the chassis number. What bothers me is what will
happen when microprocessors happen when microprocessors begin to
take over.
It is also a matter for concern to Olaf It is also a matter for concern to Olaf
Lambert, of the Automobile AssociaLambert, of the Automobile Association. While conceding that chips will
make for quieter and more economical cars, he is worried that not many garages are going to be able to afford the test gear to diagnose faults, particularly as the connectors may well be
different in different makes different in different makes of car, in
keeping with the VITSOL policy (Variety is the spice of life).
I do so agree. It is not easy to imagine the minor prophet at the local garage ' explaining the sleeping sickness afflicting one's wheels in terms of micro-
processors. "It's yer chips, innit?" he will say. "What yer want is new r.o.m. - soon wear out, these foreign ones", he will remark, casually, mentioning also that he will need to pay a 'high-
technology bonus' and that it will therefore cost even more than usual. therefore cost even more than usual.
It almost makes you hope the oil runs out quickly so that we can all go back to
push-bikes. push-bikes.

Wayne Kerr Radford The dynamic range
Wilmot Breeden Electronics Limited • Durban Road Bognor Regis West Sussex PO22 9RL England • Phone Bognor (02433) 25811 - Telex 86120

Simply ahead..

I.L.P's PROVEN RANGE OF HIGH

PRODUCTS OF-THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

and staying there

 PERFORMANCE MODULAR UNITS

VALUES OF COMPONENTS FOR CONNECTING TO HY5 Volume $-10 \mathrm{~K} \Omega$ log.
Bass $/$ Treble $-100 \mathrm{~K} \Omega$ linear. Balance $-5 \mathrm{~K} \Omega$ linear.

THE POWER AMPLIFIERS

Model	Output Power R.M.S.	Distortion Typical at 1 KHz	$\begin{array}{\|l\|l} \hline \text { Minimum } \\ \text { Signal/ } \\ \text { Noise } \\ \text { Ratio } \\ \hline \end{array}$	Power Supply Voltag Voltage	Siz in mm	$\begin{aligned} & \text { Weight } \\ & \text { in gms } \end{aligned}$	Price +
HY30	$\begin{array}{\|l\|} 15 \mathrm{~W} \\ \text { into } 8 \Omega \end{array}$	0.02\%	80dB	-20-0-+20	105×50×25	155	$\begin{aligned} & \hline \text { £6.34 } \\ & +95 p \\ & \hline \end{aligned}$
HY50	$30 \mathrm{~W}$ $\text { into } 8 \Omega$	0.02\%	90dB	-25-0 +25	105×50×25	155	$\begin{gathered} £ 7.24 \\ +£ 1.09 \end{gathered}$
HY120	$\begin{array}{\|l\|} \hline 60 \mathrm{~W} \\ \text { into } 8 \\ \hline \end{array}$	0.01\%	100dB	-35-0-+35	$114 \times 50 \times 85$	575	$\begin{aligned} & \text { £15.20 } \\ & +£ 2.28 \\ & \hline \end{aligned}$
HY200	$\begin{array}{\|l\|} \hline 120 \mathrm{~W} \\ \text { into } 8 \Omega \end{array}$	0.01\%	100dB	-45-0-+45	$114 \times 50 \times 85$	575	$\begin{aligned} & \text { £18.44 } \\ & +£ 2.77 \end{aligned}$
HY400	$240 \mathrm{~W}$	0.01\%	100dB	-45-0-+45	114×100×85	1.15 Kg	$\begin{aligned} & £ 27.68 \\ & +£ 4.15 \end{aligned}$

Load impedance - all models $4-16 \Omega$
Input sensitivity - all models 500 mV
nput impedance - all models 100 K -

THE POWER SUPPLY UNITS

PSU 36
PSU 50
PSU 60
PSU 70
PSU 90
PSU18

5 YEAR GUARANTEE
7.DAY DESPATCH ON
ALL ORDERS
INTEGRAL
HEATSINKS
BRITISH OESIGN AND
MANUFACTURE
FREEPOST SERVICE
-see helow* ALL U.K. ORDERS DESPATCHED POST PAID HOW TO ORDER, USDG RTE SOST SYSM Simply fill in orrer coupon with payment or
credit card instructions. Post to address as
below but do not stanp enveloge below but do not stamp envelope - we pay
postage on all letters sent to us by readers of

- ELECTAONICE LTD.

FREEPOST 5 , Graham Bell House, Roper Close,
Canterbury, Kent CT2 7 EPP.
ww - 065 FOR FURTHER DETAILS

THINK

Whatever it is, the
 of power amplifiers will handle it

 driving, variable frequency power supplies and servo motor systems.

S 500D	S 250D
Dual Channel	Single Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high	$19^{\prime \prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms per channel	500 w r.m.s. into 2.5 ohms
900 F r.m.s. in bridge mode	Retro-convertible to dual channel
DC-20 KHZ at full power	DC-20 KHZ at full power
0.005% harmonic distortion ftypical) at	Full short and open circuit protection
300 m r.m.s. into 4 ohms at 1 KHZ	Drives totally reactive loads with no
3 KW dissipation from in-built force cooled	adverse effects
dissipators	

A complete range of matcring transformers and peripheral equipment for closed loop, constant current and voltage use are available.
Alternative input and output termination to order. Rack case for bench use built to specifications. For complete data write or call.

Kirkham Electronics
 MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL DVISION OF K.R.S. LIMIED

FRANCHISED COMMERCIAL AND INDUSTRIAL AGENTS FOR ELECTRONICS WW - o64 FOR FURTHER DETALIS

Happy Memories

$\begin{array}{llll}4116200 \mathrm{~ns} & £ 4.50 & 4116 & 150 \mathrm{~ns} \\ \mathbf{2 1 1 4} 200 \mathrm{~ns} & \mathbf{£ 4 . 5 0} \\ \mathbf{£ 4 . 7 5} & 2114450 \mathrm{~ns} & \mathbf{£ 4 . 2 5}\end{array}$ $\begin{array}{llll}2114200 \mathrm{~ns} & £ 4.75 & 2114450 \mathrm{~ns} \\ 2708450 \mathrm{~ns} & £ 4.95 & \mathbf{2 7 1 6 5} 5 \mathrm{volt} & £ 16.95\end{array}$ $\begin{array}{lrrr}\mathbf{2 1 L 0 2} 450 \mathrm{~ns} & \mathbf{8 5 p} & \mathbf{2 1 L 0 2} 250 \mathrm{~ns} & £ 1.25\end{array}$
VERBATIM mini discs soft sectored-with FREE library case $£ 19.95$ per ten

SALE

We're moving shortly to new premises and don't want to carry much
Bargains from Saturday, 26th April All prices include VAT
30 p postage on orders below $£ 10$ Access \& Barclaycard

All orders to:
Dept. WW
19 Bevois Valley Road Southampton, Hants, SO2 OJP

Telephone (0703) 39267

FUSES Quick acting, Anti surge. Ceramic, from $£ 2.80$ per 100 .
POWWER RESISTORS $5 w-17 w .477-10 \mathrm{~K}$, from $£ 10$ per 100 . POWER RESS
PCB Guides, self- fixing from $£ 4.86$ per 100 .
 ELMA knobs $\&$ accessories. Crimp (solderless) terminals
Cable Sleeves $\&$ Markers from $£ 1$ per 1,000 . SLEVING, Neoprene. PVC, Silicone rubber - all colours.
Surplus stock lists available of Power resistors.
 types), Polystyrene capacitors etc.

PBRA LTD. Hopfield (073274)

Golden Green, Tonbridge, Kent, TN 11 OLH

PROBABLY THE MOST INEXPENSIVE OUALITY SIGNAL GENERATOR AVAILABLE TODAY Audio Range: 10 OHz
four switched ranges. Distortion
Extremely low.
(.0015\% typical, @ 1 Khz).
Output
1 ininto 600 n , with
Fixed and Variable Atten.
Fixed and Variable Atten.
Sine and Square Wave.
Sine and Square.
Sattery or Mains.
Based on a Linsley Hood design.
TELERADIO ELECTRONICS
325 FORE STREET, EDMONTON, LONDON N9 OPE

| $\begin{array}{r}325 \text { FORE } \\ 01-8073719\end{array}$ |
| :--- | :--- |

WW-008 FOR FURTHER DETALLS

\& TRTTOTEST
 the range has increased -

THE PRICES ARE DOWN

THE CS 183030 MHz + Sweep Delay

Brief specification
Rectangular PDA

CS1830 only $\mathbf{£ 4 5 5}+$ VAT includes. $\begin{aligned} & \text { Sweep delay } 1 \mu \mathrm{~S}-100 \mathrm{~ms} \text {. }\end{aligned}$

THE C51572 30 MHz for the VTR Lab.
If you are in Video, you need the CS 1572
The CSI 1572 is a dual trace 30 MHz oscilloscope designed for the video tape recorder

 ask for the full story
Brief Spocification
Sriof Spocirication
Astor cs 1830 oxect that the sweep delay feature is replaced by comprehensive video
sweep delay
ation CS 1572 only $£ 425+$ VAT, includes 2 probes

DC to 1000 V
AC to 1000 V. DC to 1000 V
AC to 1000 V
n to $20 \mathrm{M} \Omega$
1 . 2 A
Semi Auto Ranging

705 MULTIMETER

FC756 500 MHz COUNTER
$10 \mathrm{~Hz}-500 \mathrm{MH}$
50 mV
Superb
instrument
 £225 + VAT

L-WWE
ELEETRONTES

The New FM/AM 1000swith

 SpectrumAnalyser-wecall it the SUPER-SA portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope tone generator, deviation meter, modulation meter, signal generator wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor

RADIO SHACK LTD for DRAKE

Ham Bands with $1.5-30 \mathrm{MHz}$ receive with bult-in 150 MHz frequency counter plus option, of 0-1.
Iransceiving aplication $1.8-30 \mathrm{MHz}$

RADIO SHACK LTD

For Communi
Trio testgear,
We are situated iustatound the corner tom West Hampstead Underground Station
 SRAKE \pm SaIES \pm SERVICE RADIO SHACK LTD 188 BROADHURST GARDENS, LONDON NW6 3AY Giro Account No. 588 7151. Toleppoiono: 01.62477 ableo: Rodio She iondon, NWe Tolox: 23718 WW-042 FOR FURTHER DETAILS

SOFTY provides:

- TV map of memory contents (Hex) - Keyboard entry with assembler facility - Serial/parallel Inputs (e.g. RS232) - EPROM programming ($2708,2716,2732$, etc.) - A low cost solution! (£100 kit, $£ 120$ built + VAT)

SOFTY-What else do you need?

ww-049 FOR FURTHER DETAIL

The $\mathbf{7 2 0 8} \mathbf{6 0 0}$ MHz Mini Counter
the quality low cost counter
features.
All Metal Cabinet 8 Digit. $4^{\prime \prime \prime}$ LED Display © Built-in Prescaler \bigcirc
Automatic Dp Placement Gate Light IC Sockets Included 240 V
Automatic Dp Placement Gate Light IC Sockets Included 240 V
or 12 V Operation Proportional Control Crystal Oven (Optional)
Built-in VHF-UHF Preamp Built-in VHF-UHF
Batteries (Optional).
availáble from the exçlusive u.k. distributors SOTA COMMUNICATION SYSTEMS LTD. 26 CHILDWALL LANE, BOWRING PARK, LIVERPOOL L14
MERSEYSIDE. TEL. $051-4805770$ Telex 627110 SOTAG
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

BAKER LOUDSPEAKERS
"SPECIAL PRICES"

RADIO COMPONENT SPECIALISTS

Becogise me?

If you do you should know
your
authorised

Avo Sales and Service Centre
Quick turn round on estimates/repairs Large stocks of new AVOMETERS
(0) Farnell International Farnell International I Instruments Ltd., Sandbeck Way, Wetherby West Yorkshire LS22 4DH Tel 093763541 Telex 557294 Farist G ww-070 FOR FURTHER DETALLS

TRANSCENDENT 2000

 SINGLE BOARD SYNTHESIZER

WE'VE MOVED: NEW FACTORY UP PRICES DOWN!

NCREASED C MCREASED CAPACITY AT OUR BIG NEW FACTOFY
MEANS MANY PAICES DOWN ALL OTHER FROZENU TRANSCENDENT DPX

Nother superb design by synthesizer expert tim orr! as featured in electronics today NTERNATIONAL AUGUST, SEPTEMBER, OCTOBER 1979 ISSUES

Cabinot tizo $36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\prime \prime}$ (raar) $3.3^{\prime \prime}$ (frone)
COMPLETE KIT ONLY £299.00 + VAT

ORDERING INFORMATION AND MORE KITS INCLUDING THE BRABCN NOOLS ON NEXT PAGE

NEW BOOKS			Z80 воокs		
The S100 and	Poe	£ 5.05	280 Prog	Osbourne	
Software development	Jones	${ }^{213.95}$	${ }_{780}^{\text {Z80 P10 }}$ Pechnical Manual		
Computers and Commonsense.	Hunt		Z80 Programming M		
Principles of Data Base Management.	Martin	${ }_{812.50}$	Z80 Microcomputer Handbook	Barden	£ 6.95
Cobol for Beginners	Worth	£ 7.75	Practical Microcomputer Programming Z80	Weller.	± 19.55
16-bit Microprocessor Architecture	Dolhaff	£16.20	Z80 Instruction Handbook	Scelbi	£ 3.25
6502 Assembly Lang. Programming	Osbourne	± 6.95	Z80 Assembly Language Programming	Osbour	£ 6.95
Introductory Experiments with Digit			Introduction to TRS 80 Graphics		£ 5.75
Electronics and 8080A Book	Rony		Z8001/Z8002 Product Spe		£ 3.75
			Z8000 CPU Instructio		
Microcomputers for Business Applications Handbook of Microprocessors,			Z80 Instant Programs (book) for Nascom	Hopton	
			280 Instant Programs (cassette) for Nascom Hopton		
Introduction to Microprocessors The VNR Concise Encyclopedia of Mathematics .					
			Interfacing $\begin{aligned} & \text { Book 1 } \\ & \text { Book } 2\end{aligned}$		¢ 7.75 £ 8.50
	Gellert	815.35	Z80 Assembley Language Programming	Osbour	£ 6.95
сооквоокл			BASIC		
Active Filter Cookbook Lancaster ${ }_{\text {f }} 10.45$			The Basic Primer The Basic Handbook		
IC OP AMP Cookbook Jung . . £ 9.50		\& 6.95 $£ .50$ 1		Lien	11.0
			SOFTWARE TAPES FOR PET\& TRS 80		
TTL Cookbook	Lancaster	${ }^{\text {¢ } 6.95}$			
The Cheap Video CookbookIC Converter Cookbook	Lancaster	£ 4.30	All at $\frac{86.65 \text { each. }}{}$		
INTRODUCTORY BOOKS The Mighty Micromite Intro. to Personal \& Business Computing A Dictionary of Microcomputing			Terms: OFFICIAL ORDERS (min. $£ 10.00$). ACCESS \&		
			BARCLAYCARD WELCOME.		
	$\begin{aligned} & \text { Zaks } \\ & \text { Burton } \end{aligned}$	£ 4.95	SEND FOR COMPLETE POSTAGE $\&$ PACKING.	PRICES	UDE
MAIL ORDER: 40 Bartholomew Street, Newbury, Berks. Tel: 063530505					
MANCHESTER: 220-222 Stockport Road, Cheadle Heath, Stockport. Tel: 0614912290					
BIRMINGHAM: Ist Floor Of	Tivo	tr	oventry Road, Birmingham. Tel:	021707	

wW - 091 FOR FURTHER DETAIL

WRELESS WORLD, MAY 1980

CHROMATHEQUE 5000

DE LUXE EASY TO BUILD LINSLEY HOOD 75W STEREO AMPLIFIER $£ 99.30+$ VAT

BLALK NOLS

FEATURED INTHIS MONTH'S ELECTRONICS TODAY INTERNATIONAL

COMPLETE KIT ONLY $£ 49.80$
MPA 200

100 WATT (rms into 8 Ω) MIXER / AMPLIFIER

COMPLETE KIT

ExPorr Orders: No VAT. Postage charged at actual cost plus $£ 1$ handling and

SECURICOR DELLLERY
NAT ind ISive) per kif.

NEW FACTORY ON SAME INDUSTRIAL ESTATE
ADDRESS AND PHONENUMBER UNCHANGED
our catalogue is free! write or phone NOW!
POWERTRAN ELECTRONICS

TYPE 80 SERIES UNITS

RF PREAMPLIFIERS, FREQUENCY CONVERTERS SIGNAL SOURCES, ETC. .

TYPE 8025 MOUNTED IN TYPE 8036

STRIPLINE PREAMPLIFIER
200 MHz. 1500 MHz Nois STRIPLINE RF CONVERTER Input 200 MHz. 1500 MH .

 WIDEBAND RF PREAMPLIFIER 10 kHz . -150 MHz . without tuning.
Gain 40 dd. $\pm 0.5 \mathrm{~dB}$. Noise factor 3.0 dB . VMOS LINEAR POWER AMPLIFIER
40 MHz. 250
MH. without tuning. VMOS LINEAR POWER AMPLIFIER 30 kHz -. -40 MHz . without tuning.
4 watts maximum RF output.
HIGG STABILITY PHASE-LOCKED SIGNAL $20 \mathrm{MHz} .-1000 \mathrm{MHz}$. 1 V . output at 50 ohms UHF TELEVISION PREAMPLIFIER UHF TELEVISION PREAMPLIFIER
Channel group 'A' $21-34$, ' B ' $39-51$, or
$49-68$ Gain 20 dB . Noise factor 1.2 dB . Weatherproof
100 kHz - 500 MHz . WIDEBAND MIXER.
$10 \mathrm{MHz-1500} \mathrm{MHz}$ WIDEBAND MIXER. $10 \mathrm{MHz-1500} \mathrm{MHZ}$ WIDEBAND MIX
MASTHEAD WEATHERPROOF UNIT
nits. Stabilized mains power supply. rovides 4 outputs from one ampifiner
UNITS ARE AVAILABLE FROM STOCK.
CONTACT: CONTAC

Tespara HIIIIITIIHATINS

RESEARCH COMMUNICATIONS LTD

 PEEL HOUSE P PORTERS LANE OSPRINGEFAVERSHAM - KENT ME $130 D R$ ENGLAND TELEPHONE: FAVERSHAM 2064 (STD CODE 079 582)

Cut costs and speed trouble shooting

Huntron Tracker

This easy to use test instrument displays shorts, opens, and leakage in solid state
components. Check diodes, uniunctions, bipolars, Darlingtons, JFFET's,

MTL Microtesting Limited 1-15 Butts Road, Alton, Hampshire
Telephone: Alton (0420) 88022

ORGAN and PIANO KEYBOARDS

Price
inc. VAT $P \& P$
4-Octave C-C
5-Octave C-C
5-Octave - -F
5-Octave $\mathrm{F}-\mathrm{F}$
6-Octave C-C
£32.20 £2.75
 $£ 34.50$
$£ 36.80$
$£ 3.00$

DALSTON ELECTRONICS 40a Dalston Lane; Dalston Junction

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME
Fill range available to replace 1.5 volt dry cells and 9 volt P type
batteries, SAE for lists and prices. $£ 1.45$ for booklet, "Nickel Cadium Power," plus catalogue.

Write or call at:

SANDWELL PLANT LTD

See full range at TLC, 32 Craven street, Charing Cross, London WW-048 FOR FURTHER DETAILS

PSI Comp 80. 280 Based powerful scientific computer Design as published in Wireless World.
The kit for this outstandingly practical design by John Adams pubbished in a series of articles in Wireless World really is complete!

Value Added Tax not included in prices
 and VAT rate changes axelude
EXPORT ORDEESS No VAT

NEW FACTORY ON SAME INDUSTRIALESTATE
ADDRESS AND TELEPHONE NUMBER UNCHANGED

POWERTRAN COMPUTERS

A new Q \& A from Newnes Technical Books
 Amateur Radio
 FC Judd G2BCX

* What kinds of transmitters are used for amateur radio?
* Is an aerial difficult to make?

What receiving equipment is available?

These questions plus many others are answered in this book, which explains amateur radio in simple terms - what it is, how it started and how it has developed The question and answer format also covers the basics of electrical theory, transmission and reception, aerials, the radio amateurs' examination and its requirements, and explains simply how you can become a radio amateur and join a world-wide fraternity.
1980
120 pages
£1.75/US\$4.00

Newnes Technical Books
Borough Green, Sevenoaks, Kent TN15 8PH

Butterworth
prices apply.

Toroidal Transtormers

Or
Yet another new development from I.L.P

> MADE IN OUR OWN FACTORY AND READY FOR PROMPT DELIVERY
> $\begin{aligned} & \text { In designing and developing our own very efficient power amplifiers, } \\ & \text { it became essential to provide power supply units able to maintain }\end{aligned}$ it became essential to provide power supply units able to maintain $\begin{aligned} & \text { our accepted high performance standards. Ideally, we knew that with } \\ & \text { the heavier output units, toroidally wound transformers were by far }\end{aligned}$ the heavier output units, toroidally wound dranstormers were by far our own. Now we have a well organised manufacturing division devoted exclusively a making these special

SIMPLY AHEAD - and staying there Enquiries to

THE TRANSFORMER DIVISION I.L.P. ELECTRONICS LTD ry, Kent CT2 7EP Roper Close, Canterbury, Kent CT2
Telephone: (0227) 54778. Telex: 966780
WW - 061 FOR FURTHER DETAILS

The exhibition for the professional radio amateur.

May 9th 10am-7pm, May 10th 10am-6pm.

RSGB 1980 EXHIBITION ATALEXANDRA PALACE
Admission Fee £1.0 Whether you are a professional involved in electronics, a dedicated radio amateur, short
wave listener or interested in any aspect of electronics as a hobby, this specialist exhibitio wave listener or inte
Find out tow radio amateurs bounce signals off the moon and off meteors as they join the ranks of over 1 million radio amateurs world wide.

Public Transport Alexandra Palace is easily reached by road

 By Car. A.P. is near Muswell Hill or Wood Green, off the North , Tralk-in: GB2AP
FM S22 or SU8 (initial calls). SSB
144:28MHz (listening watch) -Discover the world of

- AMATEUR RADIO

Radio Society of Great Britain, 35 Doughty Street, London WCIN 2AE

If you are way down on the circulation list, you may not be getting the information yo require from the journal a soon as you should. Why not have your own copy.

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, thei address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

 Bolitium: Asencoeet
 Ruse dilia Peitio

 Cyprus: Genoral Pross
 diono Stiont, P.O

 Sormany:w

 tran: AD.A.:151 Khiab

Postage will be paid by
Licensee

Wireless World:

Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to :

Subscription Manager,

IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH, England
Prease arrange for me.to receive further details of the products listed, the appropriate reference numbers of which have been entered in the
Position in Company
Name of Company.
Address.
\qquad
\qquad
\qquad
VALID FOR SIX MONTHS ONLY

Wireless World Subscription Order Form Wireless World, May 1980 ww 065

UK subscription rates	USA \& Canada subscription rates
$\mathbf{1}$ year: $£ 9.00$	1 year: $\$ 31.00$
Overseas $\mathbf{1}$ year: $£ 12.00$	

Please enter my subscription to Wireless World for 1 year
I enclose remittance value.

Name

Address.
ubscription rates 1 year: $\$ 31.00$

OVERSEAS ADVERTISEMENT AGENTS

Hungary Mrs. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget-Telephone : 225008 Telex: Budapest $22-4525$ INTFOIRE
taly Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6, 20154 Milan - Telephone 347051 Telex: 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA (Japan), B212 Azabu Heights, 1-5-10 Roppongi, Minato-Ku, Tokyo 106 Telephone : (03) $585-0581$

United States of America Ray Barnes, ${ }^{*}$ IPC Business Press 205 East 42nd Street New York, NY 10017 -Telephone: (212) 6895961 -telex: 421710 . Suite 1548,35 East Wacker Drive, Chicago, lllinois 60601 - Telephone (312) 63074

Mr. Victor A Jauch
Elmatex Internationa
P.O. Box 34607 ,

Los Angeles Calif. 90034 U.S.A. Telephone: (213) 8218581 telex: 18-1059. Mr. Jack Mentel, The Farley Co., Suite 6 Ranna Building, Cleveland, Ohio 4415 Telephone : (216) 6211919 P. O. Box 2008, Miami Beach, Florid 33140 - Telephone : (305) 5327301 Mr. Jim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephane: (404) 2377432 Mike Loughlin, IPC Business Press, 5055 Memorials, Ste 119, Houston, 77079-Telephone: (713) 7838673

Canada Mr. Colin H. MacCulloch, International Advertising Consultants Lid 915 Carlton Tower, 2 Carlton Street, Toronto 2 -Telephone (416) 3642269

Why Scopex?

There's a range of answers.

There's something every one of our scopes has in common. Great accuracy, tremendous reliability and

Take the new 4D-10B. The fully stabilised power supply gives 3% accuracy. There's a XY facility using CMOS ICs for extra reliability, Z modulation for brightening or dimming the trace, 10 MHz scan at full bandwidth over the full screen area, trace locate and TV
field trigger. At $£ 210.00^{*}$ it's astonishing value field trigger. At $£ 210.00^{*}$ it's astonishing value.

Or the 4D-25. A dual trace model with DC-25MHz bandwidth and $10 \mathrm{mV} / \mathrm{cm}$ sensitivity. Signal delay allows you to trigger from and see the leading edge of any signal. Trigger level and slope are selected on one E360:00*.

Plus the 4 S 6 single beam 6 MHz bandwidth model with easy to use controls. 10 mV sensitivity and timebas with easy to use controls. 10 mV sensitivity and timebase a very good price. £144.00*

Return the coupon for full details of the range that gives you a lot more scope.
*UK list price excluding VAT.

114
WIRELESS WORLD, MAY 1980

there are transformers and...

Drake Transformers

OEM - let Drake Transformers advise you on a component specification and design to solve that special problem. Preproduction prototypes and development undertaken as necessary.
Well known over a quarter century for personal service and high-quality products, Drake specialise in the design and manufacture of transformers and other wound components for large and small quantity production.

Expertise and service put DRAKE TRANSFORMERS in a class of their own

DRAKE TRANSFORMERS LIMITED
South Green Works Kennel Lane Billericay Essex CMII 2SP
Telephone: Billericay (02774)51155 Telex: 99426 (prefix Drake)

Electronic components from Rendar

Lighted switches . 'Minitop' miniature switches LED indicator lights. Fuse holders

Binding posts Phono pluas and sockets Terminals . Miniature jack plugs

Valve sockets . Appliance plug connectors Mains connectors Coaxial components
The vast range of components now available from Rendar include West German, Swiss and Japanese products which all conform to international state-op-the-ant specifications.
Call Tony Lane now for a quotation!
ww-020 FOR FURTHER DETAILS

116 Wireless World. Mar 1980

WIRELESS WORLD, MAY 1980

INTRUDER 1 Mk. 2 RADAR ALARM
With Home Office Type approval
 Complete kit $£ \mathbf{4 9 . 5 0}$ plus VAT, or ready built and tested $\mathbf{£ 6 4 . 5 0}$ plus Vat.

Wireless World Dolby noise reducer

WIRELESS WORLD，MAY 1980

reprints

If you are interested in a particular article special Feature or advertisement published in

WIRELESS WORLD

why not take advantage of our reprint service． Reprints can be secured at reasonable cost to and valuable addition providing an attractive material．（Minimum order 250．）
For further details contact：
Brian Bannister IPC Electr
Brian Bannister，IPC Electrical－Electronic Press
Ltd Phone 01 －261 Ltd．Phone：01－261 8046 or simply complete
and return the form below． urn the form below．
To：Brian Bannister Reprintsーーーーーー
Dorset House，Stamford Street
London SE1 9LU
I am interested in
advertisement headed ．．．．．．copies of the article／
VIRELESS WORLD
on page（s） in the issue dated
Please send me full details of your reprint service by
return of post．
Name
Name
Address
Tel．No．

WIRELESS WORLD, MAY 1980
 121
 Electronic Brokers No. 1 in Second User Minis \& Peripherals

DEC EQUIPMENT

KW11P Programmable Clock. $£ 345.00$
LA 11-PD Matrix Printer complete with
Unibus Controller MFJ1L 8 KWW Parity Core including 9-slot
system unit. $£ 975.00$. MM11LP 8KW Parity Core. $\mathbf{£ 7 5 0 . 0}$
PR11 High Speed Paper Tape Reader complete with Unibus Controller $£ 1295.00$

DP $11 / 40$ Processor with 48 KW parity core, KT 11 D Memory Management, DL 11 Asynchrono
$\mathbf{E 5 2 5 0 . 0 0}$.

PDP 11/04-MD 9-slot $51 / 1^{\prime \prime}$ Processor with NEW SURPLUS. $£ 4500.00$. | PDP $11 / 1051 / 4$ "P Processor with 8 KW Core |
| :--- |
| $\mathbf{8 1 8 5 0 . 0 0}$ | PDPEE Series Modules - large stocks of ption modules, add-os etc. all at reduced prices. with RKO5J and

R111D Disk Controller
RK05F Drives +6 ft Cabinet $\quad \mathbf{£ 6 2 5 0 . 0 0}$

CALCOMP 565 XY PLOTTER

NEW ASCII KEYBOARDS -

 NEW LOW PRICES

KB756 56-station ASCII Kerber

 KK2376 S.
KB15P ROM Edge
R DC-512 DC convertor to allow $£ 3.25$ oration at 54 V
 numeric/ Cursor control cluster, mounted in steel
enclosure PERK 5-station ASCII Keyboard for PET Com

MODULAR ONE SERIES VDUs

ASR33 and KSR 33 TELETYPES

PRINTERS \& TERMINALS

BALL MIRATEL $9^{\prime \prime}$ Monitor with case $£ 95.00$
GETERMINET 300 KSR Impact Printer GE TERMINET 1200 impact Printer HAZELTINE H-1200 VDU $£ 375.00$ HAZELTINE H-2000 VDU from $£ 395.00$
HAZELTNE Thermal Printer $£ 395.00$. HAZELTINE Thermal Printer. £395.00.
SCOPE DATA Electrosensitive Printer
E495.00 TEKTRONIX 4601 Hard Copy Unit $£ 1400$
 TEXAS 742 Programmable Terminal $\underset{£ 1750.00}{ }$

MISCELLANEOUS

AMPEX 1 " $\times 3000$ Video Tape $\quad \mathbf{£ 1 5 . 0 0}$ DATA GENERAL NOVA 12104 K CPU DIGITRONICS P 135 Paper Tape Punches EMI 15 ji Diagonal TV Monitors $£ 100.00$ SHUGART SA 400 Minifloppy. $\mathbf{£ 1 9 5 . 0 0}$.
SHUGART SA $8008^{\prime \prime}$ Floppy. $£ 395.00$.

E二三 49/53 Pancras Road London NW12QB Tel:01-837 7781. Telex 298694

122
 WIRELESS WORLD. MAY 1980 No. 1 in Second User

WIRELESS WORLD, MAY 1980

BOONTON
Inductance Bridge 63 H
$0-110 \mathrm{mH} 0.25 \%$ $50 \mathrm{KHz}-500 \mathrm{KHz} \quad £ 2750$

MARCONI INSTRUMENTS Wave Analyser TF2330
Frequency Range Frequency Range
$20 \mathrm{~Hz}-50 \mathrm{KHz}$ $\mathbf{£ 3 9 5}$ SIGNAL SOURCES HEWLETT PACKARD
Oscillator $10 \mathrm{OHz}-10 \mathrm{MHz} 651 \mathrm{~B}$
V.H.F. Oscillator 3200B Decade Sscillator 4204A
U.H.F. Signal Generato 612 A
V.H.F. Signal Generator 608 F MARCONI INSTRUMENTS A.F. Oscillator TF 2000
A. F. Oscillator TF 2100 A.M. Signal Generator. TF801D/8S
L.F. Oscillator TF $2102 / 1 \mathrm{M1}$ L.F. Oscillator TF 2102/1M1 Two Tone Source TF 2005R
H.F. Generator TF $144 \mathrm{H} / 4$ H.F.F. Genera
PHILIPS Function Generator PM 5108
Function Generator PM 5127
Function Generator PM 5167

MISCELLANEOUS ADlse Generator PG 59 (CT 600)
OHt
Oif Frequency Standard OFS 2B AVO Tester VCM 163

ROHDE AND SCHWARZ
tektronix
TEKTRONIX
Pulse Generato 2101
Time Mark Generator 184
Time Mark Generator 184
Time Mark Generator 2901
texscan
Sweep Generator VS 40
WAVETEK
Sweep Generator 135
Programmable Phase Meter 755

Also large stock of Wandel \& Golterman and Siemens Level Oscillators, Receivers,
Sweep Systems etc. Phone us with you Sweep Systems etc. Phone us with yo

ONLY SMALL SELECTION OF OUR VAST STOCKS SHOWN HERE - SEND FOR LATEST CATALOGUE
WANDEL \& GOLTERMAN Complete P.C.M. System

Electronic Brokers unique catalogue contains 62 pages plus update of second
user Test Equipment, and Mini Computer user Test Equipment, and Mini Computer
and Peripherals. Vast lists of Signal Sources, Oscilloscopes, DVMs, Counters,
Recorders, DEC Sources, Oscillosco
Recorders, DEC Compuzers, VDU Largest stock.
most cost most cost effective. LATEST EDITION SENT FREE IN UK Airmail to overseas
addresses $£ 2.00$

49/53 Pancras Road London NW120ß Tel:01-837 7781. Telex 298694

The NEW Marshall's 79/80 catalogue is just full of components

and that's not all. . .

\ldots our new catalogue is bigger and better than ever Within its
60
pages are details and prices of the complete range of 60 pages are details and prices of the complete ras
components and accessories available from Marshall's.
These include Audio Amps. Connectors, Boxes, Cases, Bridge
Rectifiers, Cables, Capacitors, Crystals, Diacs, Diodes, Dis plays, Heatsinks, I.Cs, Knobs. LEDs, Multimeters, Plugs Sockets, Pots, Publications, Relays, Resistors, Soldering Equipment, Thyristors, Transistors, Iranstormers, Voltage Regulators, etc., etc.
Plus details of the NEW Marshall's 'budget' Credit Card. We
are the first UK component retailer to offer our customers our own credit card facility.
Plus - Twin postage paid order forms to facilitate speedy
ordering.
Plus - Many new products and data
Plus 100 s of prices cut on our popular lines including I Cs,
Transistors, Resistors and many more.
If you need components you need the new Marshall's
Catalogue. Catalogue.
Avaiable by post 65 post paid from Marshall's, Kingsgate from any branch to callers 50 p.

Retail Sales: Londan: 40 Crickiewood Broadway, NW2 3ET. Tal: $01-452$ 0161/2. Also 325 Edgware Road, W2. Tel: $01-723$ 4242. Glasgow: 85 Wast

DESIGN/PRODUCTION

PROBLEMS?

Suffer no more - contact the experts by dropping a CODESPEED ELECTRONICS P.O. Box 23, 34 Seafield Road Copnor, Portsmouth, Hants PO3 5B We design and assemble equipment ranging from runs, competitive prices with good delivery dates 'IDEAS INTO REALITY'

WW-046 FOR FURTHER DETALLS
ANY MAKE-UP OR COPY
QUERIES CONTACT JOHN GIBBON OR BRIAN CHAPMAN 01-261 8353

TERMINAL BARGAINS

ITEL Model 1051

* IBM GOLFBALL Typewriter
* RS 232/V24 Interface
* Full upper/lower case character set
- Paper tape reader/punch
* Works as stand-alone word processor
\star Full technical information available
* £375.00

DI/AN Model 3030
$\star 30 \mathrm{cps}$ KSR terminal similar to DECwriter
\star 110, 150, 300 BAUD

* Upper/lower case
\star Compact, desk top size
* Optically isolated RS 232 interface
※ $\underset{£ 750.00}{£ 395.00}$ (also available with tape reader/punch at

OLIVETTI Model 318/328

\star Printing terminal
\star Paper tape reader and punch
\star TTY compatible interface
\star RS 232 line unit
\star Free optional stand
\star £100.00 (correspondence quality u/I case version
available at $£ 250.00$)
COMPUTER APPRECIATION ${ }^{\begin{array}{c}\text { 8 } \\ 0883 \text { (Godstone) } \\ 863221\end{array}}$

- Available with 14, 16, 24 and 40 contacts. - Mate with standard IC sockets.
- Fully assembled and tested.
- Integral molded-on strain relief.
- Line-by-line probeability.

Faster and Easier is what we're all about.

0883 (Godstone) 843221

FLAT RIBBON CABLE ASSEMBLIES WITH DIP CONNECTORS

AP DIP Jumpers are the low-cost, high quality solution for jumpering within a PC board; interconnecting between PC boards, backplanes and motherboards; interfacing in out/Output signals; and more.
All assemblies use ribbon cable. Standard lengths are 6, 12, 18 24 and 36 inches.
SINGLE-ENDED DIP JUMPERS DOUBLE-ENDED DIP JUMPERS

SINGLE ENDED

PINS	$36^{\prime \prime}$
14	$£ 1.75$
16	$£ 1.94$
24	$£ 3.00$
40	$£ 5.03$

DOUBLE ENDED

PINS	$6^{\prime \prime}$	$12^{\prime \prime}$	$18^{\prime \prime}$	$24^{\prime \prime}$	$36^{\prime \prime}$
14	$£ 1.81$	$£ 1.96$	$£ 2.12$	$£ 2.27$	$£ 2.57$
$16 \cdot$	$£ 1.99$	$£ 2.16$	$£ 2.33$	$£ 2.50$	$£ 2.85$
24	$£ 3.11^{\prime}$	$£ 3.38$	$£ 3.64$	$£ 3.90$	$£ 4.43$
40	$£ 5.20$	$£ 5.64$	$£ 6.08$	$£ 6.53$	$£ 7.41$

"HOW CAN I BE SURE OF BUYING THE RIGHTVIDEO?"

It's easy to make mistakes when buying video equipment. from libraries or other companies? Will you want a lot

Buy the cheapest and you may soon find that it can't meet the varying needs of all the people (in marketing, management, training and security, for example) who will want to use it.
Buy the most expensive and you could literally waste thousands on features never used
Forget compatibility and the future and you could find yourself spending more money on extra equipment - or discarding equipment you've just bought.

WIDE CHOICE. GOOD ADVICE.

Through our network of Video Centres, we at Bell \& Howell distribute one of the largest video ranges in the U.K. This means that we can offer well-founded advice about the many options and thus help you avoid investing in mistakes. So talk to us before buying video. Ask us "What's right for me?"
We answer that question by first helping you to define how you're going to use a video system.
how you're going to use a video system.
We pose the questions buyers often forget to ask (and sellers sometimes ignore). Who will use it? When? And where? Is colour necessary? Do you want to edit your own programmes? Will you use tapes
of duplicate tapes?
From your answers we can build up a video package to meet your exact needs. It could be a simple monochrome camera with a VHS video recorder. Or a sophisticated three-tube colour camera with portable recorder, monitor and electronic editing suite. Whatever it is, we make this promise
If you don't need something, we'll tell you so. If you do need it, we can supply it - all the way to a total video need it, we can supply it - all the way to a total video system which, because it has been tailored to your individual needs, will be right for you.

AND SUPERSHIELD.

No matter what you buy from the Bell \& Howell video range, our unique Supershield warranty will guarantee you free adjustments, repairs or replacements (except for tapes and tubes) for two years after purchase. And if the job can't be done on the spot, we'll provide transport to and from a specially equipped Supershield video workshop.
Like our practical advice, that's also free. Because we believe Service starts before a sale and continues long, long after.

Enembinifira
UNIT 1, THOMASIN ROAD, BURNT MILLS INDUSTRIAL ESTATE BASILDON, ESSEX SS13 1LH TEL: BASILDON (0268) 727383

ELECTROVALUE
GOMPONENTS THAT GOUNT

Let Bell \& Howell show you the answer:
To Pieter Glas, Bell \& Howell A-V Ltd., Freepost, Wembley, Middlesex HAO 1 BR .
'd like to discuss video with Bell \& Howell.
Name
Organisation
Address

BelleHowell
Belle Howell

SHARP MZ80K £520.00

Adcom X80 Printer

Plugs directly into the sharp full graphics capability
$£ 710.00$
Sharp Monitor Listing $£ 15.00$ Sharp Basic Manual $£ 7.00$

Exorciser Compatible Products

MAIL ORDER \& CALLERS: 40 Bartholomew Street, Newbury, Berks. Tel: 063530505
CALLERS ONLY: Mersey House, 220-222 Stockport Road, Cheadle Heath, Stockport. Tel: 061-491 2290 CALLERS ONLY: 1 st Floor Offices, Tivoli Centre, Coventry Road, Birmingham. Tel: 021.7077170. TERMS: Official Orders (min. £10) Access \& Barclaycard welcome. Please add 15% VAT. Send for book list \& components/kits
catalogue.

A new generation of cases . .

The latest additions to the Bocon range of instrument cases are a masterpiece of modern tooling
The Bocon Desk series is made in black a.b.s. in
four sizes These beautiful mouldings combine highly four sizes. These beautiful mouldings combine highly The front panel is natural anodised aluminium angled to provide three separate surfaces.
The Bocon Commander is a large keyboard and display enclosure made in black foam plastic. The keyboards. The front and rear panels are sati anodised aluminium. There is a second smalle
Commander constructed as two clip-together halve in black a.b.s. again with anodised panels.
For further information on these superb case
please write, telephone or circle the enquiry card.
THE BIGGEST SELECTION DF CASES IN EUROPE

ww - 011 FOR FURTHER DETAILS

Careers in the electronics industry

Types of work available and what you need for them
by Ronald C. Slater, F.I.E.R.E. TJB Electrotechnical Personnel Services

This review sets out some of the careers which the electronics industry has to offer, the academic the possible rewards. It is intended to help those who are already employed in the industry but who, for one eason or another, are not satisfied who are training for a career in the industry but who have not yet started work and, last but by no means least, he younger readers who, though they have an interest in radio or
electronics, have not yet decided on their careers.
Perhaps the first question to be asked is Can the electronics industry provide a is not so absurd as it may seem, es pecially if it is qualified by the words 'in the UK'. Only a decade or so ago it may have been thought that the steel industry or the automobile industry could now is somewhat more doubtful. A young man or woman embarking on a career may have a working life of some 40 years ahead of him or her. It would any industry over so long a period, especially one such as electronics where changes and advances in technology are so rapid. Yet, while it would be foolhardy to forecast the changes in almost complete certainty that more and more sophisticated forms of communication will be demanded, that more and more processes in commerce and industry will become automated, and that the use of electronics, in one
form or another, will become more widespread in industry, commerce, and the home.
Hand-in-hand with this will go an
Ho increasing demand for electronic endesign, produce, test, install and service an expanding conglomeration of even more sophisticated equipment.

Education and qualifications Twenty or thirty years ago formal qualifications were of very much less importance than they are today and
many persons rose to the top of the engineering professions by dint of experience, perseverance and 'green
fingers'. In the intervening years creasing importance partly due to the advancing sophistication and complexity of technology and partly to the ncreasing availability of technical education. Thus, although it still may be possible to succeed without formal to do so and almost certainly the entry point on the career ladder will be determined by the educational course which has been followed and by the qualifica-
tions which have been attained. tions which have been attained Although in terms of employment technical personnel in the electronics industry can, in general, be divided into the three grades recognised by the EnTechnicians', 'Technician Engineers' and 'Chartered Engineers'. To become registered in any of these grades needs specified academic attainments plus a
laid down period of training, experience aid down period of training, experience
and responsibility. Registration will normally be made through an appropriate society or institution. For Tech-
nicians and Technician Engineers these are the Society of Electronic and Radio
Technicians (SERT) and the Institution of Electrical and Electronics Technician Engineers (IEETE); for Chartered Engineers there are also two institutions, these being the Institution of Electrical Electronic and Radio Engineers. Anyone who is seriously attempting to carve a career in electronics should strive for corporate membership of an appropriate professional society or in-
stitution; not only for the qualification and the letters it allows one to append after one's name but for the facilities it provides for mixing with persons with similar professional interests and for keeping up-to-d
technology.
Full details of the requirements for registration as a Technician, Technician Engineer or Chartered Engineer are available from the organisations men-
tioned above, all of which are in the tioned above, all of which are in the
London telephone directory. Very briefly, the choice of 'academic' requirements at present is as follows:

More and more women are making successful careers in electronics. Padmini Sathiaseelan, who won an award in the 1979 "'Girl Technician of the Year competition, is a development engineer at Rank Hi-Fi. She has a B. SC. (Eng.) degree,
having specialised in electronics and communications, and in her present work on
acoustics has contributed to the development and design of a new range of loudspeakers.

Technicians

Engineering with Certificate (ONC) in subject.
Approved TEC (Technician Education Council) Certificates and Diplomas in electronics and communications. City and Guilds of Londificate in Institute Par Course 271 - Telecommunications Technicians.
Course 282 - Electrical Technicians (with at least one electronics subject). Electronics Technicians
Course 172 - Final Certificate in Electronics Servicing.
Some training courses in the Armed Services are also acceptable, e.g.
Royal Navy - Artificers and Mechanicians in appropriate trades. Army - Class I Technicians in appropriate trades.
Royal Air Force - Electronic Air or Ground Technicians.

Technician Engineers
Approved TEC Higher Certificates and Diplomas.
Higher National Certificate or Diploma (HNC or HND) in Electrical and Elec-
City and Guilds Full Technological Certificate in an appropriate course.
Chartered Engineers
A university or CNAA (Council for National Academic Awards) degree in gineering. Some degrees in associated disciplines such as Physics and Mathematics may also be acceptable.
HND in Electrical and Electronic En gineering plus the CEI (Council of En
gineering Institutions) Part I Examination.
The CEI Part I and Part II Examinations.
In all three grades there are certain other qualifications which may be acceptable. There are also several changes which are imminent, particu Engineer qualifications. Full Technicia Engineer qualifications. Full advice on stitutions. It is also a good idea to seek advice from them before embarking on
a course of study.
The course of study followed by a young person may be dictated by per dane need to earn money at an early age. In general, it is possible to obtain Technician or Technician Enginee qualifications by part-time study, e.g. release or a combination thereof. To obtain qualifications to Chartered Engineer level full-time study is almost essential and this usually will be in the form of a three- or four-year degree
course. This, in turn, usually means that it will not be possible to go into full-time paid employment before the age of 21 or 22. Education Authority grants and
se, available to ease the fincial ifficulties.
Alternatively the course to be fol lowed may be determined by the failure o secure the necessary 'A' levels for admittance to a degree course
However, even if none of thes
limitations applies the question stil remains, how high should one aim Ambition is undoubtedly a very good thing, but it must be a realisable ambi tion; if it is not, then it can only lead to frustration and discontent. It really knowing oneself and one's capabilities. We do not all have the ability to become director of research or the managing director of large company. It is better fian better, tha become a first-rate techn-
There is just one further thing to be aid about education and that is quit simply that it is not a 'once and for al tinuing process that will go on for the whole of a person's career. This is particularly necessary in an industry such s electronics where technical advance re so rapid. This continuing educatio short courses at educational establish ments, attendance at colloquia and conferences or diligent reading of pro essional journals and the technic ress.
Types of jobs
n electronics there is a very wide range of jobs and careers available, and within he confines of this article it is no possible to give an exhaustive list. various tasks may vary considerably from company to company and, particularly in the smaller companies, there may be considerable overlap in the tasks one is called upon to perform. The activities of a typical company:
Research
Design and developmen
Production engineering
bility engineering
Test
Sales
stallation and commissionin
Service
Which of these you go into may be educational attainments and persona inclinations, plus, of course, th availability of jobs at the right time and in the desired location. The following paragraphs outline the qualification generally necessary in the various sec generally necessary in the various sec-

Research. The primary reason for knowledge. A great deal of fundamental research is carried out in universities and, to some extent in polytechnics
Much original work is also done in the
very fine research laboratories of the
arger manufacturers. Many research projects will require the services consist of materials scientists physicists, mathematicians, electronic engineers, chemists etc. To take an active part in research will generaly secialised knowledge and will usually call for at least a good first degree and possibly a second degree (e.g. M.Sc.
Ph.D.). It also calls for a questioning Ph.D.). It also calls for a questionin mind, an ability for innovation and
creativity and the pertinacity to con tinue to seek for a solution where non seems possible. In terms of self-esteem and inner satisfaction the rewards successful research can be very great lso necessary to be able to accep defeat, possibly after months, or even years, of endeavour. To be a leader manager or director of research it is also essential to have that fine judgement now which projects should be pursu

Design and development. The purpos of design and development is to produce something which can be manufacture from a single component such as resistor or capacitor through to a com plex computer-controlled data com munication system. It may be a one man task or it may need the exp a and it may call for the assistance of outside specialist companies in, for instance, the design and supply of large cale integrated circuits.
In most cases the precise objective opment work may have to be carrie out within the constraints of a tigh performance specification and against rigid time scale while at the same tim nal or military standards.
The most usual qualification for design and development engineer is degree in electrical and/or electron engineering or a related subject such a qualifications such as HND and HNC are often acceptable, especially backed up by relevant experience. Apart from technical knowledge the design phase of the project will, more
often than not, call for original and nnovative thinking and a disciplined and logical approach, plus in many cases, a fair degree of commercia awareness. Also it will often involv technical staff and the ability to quickly appreciate a problem outside of one own discipline, as for instance, when electronic equipment is being designed to control some oth Between the original concept, desig and building of a laboratory model and the engineering of a product suitable for manuacture and to tread, this is
vea

 1
 . d ,

 IT

|

WIRELESS WORLD, MAY 1980
under pressure, to be self-motivated and self-disciplined, to be able to accep
setbacks and failures philosophically, and to be at ease with other people whether they be other engineers or top management. The latter is very
necessary for the sales engineer selling necessary for the sales engineer selling many thousands of pounds. Above al he or she must really want to sell and to succeed. It is, perhaps, a rather formid able list of requirements and, certainly selling is no easy way out for the person
who wants a quiet life. On the other hand, for the person who has the necessary attributes it can be an exciting and rewarding life both in terms
of job satisfaction and financial benefit. A career in sales engineering is open to persons with all levels of qualification provided that they are sufficient to allow a complete understanding of the product being sold. Clearly, the more complex and advanced the product the understand it. Some of the virtues which go to make a successful sales engineer, such as the ability to comtively and comfortably with people at varying levels, are also among the requisites for successful genera management and this is one of the ways in which a sales engineer may progress gineering but is somewhat wider in scope, embracing subjects such as marketing strategy, publicity, possibly pricing and pricing agreements, and is an area into which a sales engineer may

Installation and commissioning. In many instances, particularly in the cas of large equipments or systems, a manufacturer will supply a team to install and commission the equipment; that is, to ensure that it is working the customer. The 'team' may consist of anything from one person upwards and the installation and commissioning time may be anything from a few hours to several months or more. It is a job which will usually entail periods spent volve considerable travel both in the UK and overseas; it may also
necessitate working unusual hours. For necessitate working unusual hours. For
the man or woman who likes to do a practical job combined with travelling and working in different places it can be an enjoyable and rewarding way of life.
A large number of installation and A large number of installation and
commissioning engineers will come commissioning engineers the ranks of technicians and tech nician engineers but there are also good openings for graduates, both in a
supervisory role and in dealing with the supervisory role and in dealing with the
larger and more complex equipments and systems.

Service. Service engineers and technicians are basically of three types: 'in
house', field' and 'site'. The in-house
service technician will spend his or her time on fault diagnosis and repair in the company's own premises. The field service technician will be working away from the company's premises and will within an a num The site service technician will be working permanently on the premises of one of the firm's customers. Each has its advantages and disadvantages. Inhouse service will usually mean regular people, with help close at hand if needed. Field service will entail a certain amount of travel, often working on one's own, and possibly working out of
normal hours ance and self-motivation; on the other hand it provides a certain amount of freedom and often the use of a company car. In site service a person may be she will be a member more m in many instances where site service engineers are employed the equipment concerned will be working round the clock and the service engineers will be expected to will, naturally, be compensated. will, naturally, be compensated
gineers will be employed in servicing but there are many openings for graduates, especially in dealing with the more sophisticated systems where skills such as diagnostic programming may be
required. Servicing is a good career for people who like solving problems and 'putting things right'. Field servicing, customer, can be a direct contact with the point for a subsequent career in sales engineering.

Specialisation

So far the electronics industry has been treated as an entity and no mention has been made of specialisation. Should one concentrate on analogue techniques or digital techniques? Is there a better
future in communications future in communications or computers
or consumer electronics etc, etc? These questions (and the answers!) are important to everyone in, or entering, the industry but they are, perhaps, of special relevance to the design and
development engineer. To attempt to development engineer. To attempt to article but a few general remarks may be helpful.
helpful.
In the first place it will usually be necessary to specialise to some extent, with the job in hand. Whether or not one should specialise completely and permanently is open to question, but if one decides to do so then clearly it shouve a reasonably long future In any case it is advisable to retain some adaptability by reading as widely as possible outside of one's specialisation. So far as the digital versus analogue argument is
concerned this is also a very open question. It is true that the trend in many
spheres is towards digital tech is also true that the microprocessor will make an impact in many areas of electronics, even though it may not be the wonder of the age as proclaimed by the that there is a widespread demand for good analogue designere and this is good analogue designers and this is
likely to continue. Indeed, as a result of the enthusiasm with which so many young engineers have followed the
digital and microprocessor trail, acut digital and microprocessor trail, acute shortages are becoming apparent in
other areas. For example, good r.f. designers are now beginning to have a scarcity value. In other words do not necessarily do what everyone else is
doing and do not necessarily try to get doing and do not necessarily try to get
on the band wagon of the day - less on the band wagon of the day -
popular areas may pay off better in the long run.
Most of the above remarks also apply when one is considering the various sectors of the industry such as com tion, avionics, components. Excellent careers are available in most sectors and what you choose is really a matter of be worth emphasising not always the superficially most glamorous sector which offers the most interesting and rewarding career. For example, many engineers shy away fact this is the sector where many major advances originate.

Footnotes

Because of limited space many points have been treat not at all. One of these is the not unimthing that can be said here is that in the past year or two there has been a significant upward trend in the salaries
of technicians and engineers. For of technicians and engineers. For
example in 1975 the average starting salary for a university graduate going into his or her first job wás between $£ 2300$ and $£ 2600$; this year it will be between $£ 4500$ and $£ 5200$ p.a. Other
salaries have increased proportionately. A look through the Appointments section of this issue of Wireless World will give some idea of the going rates. Finally, a word about geographical
location. Although companies location. Although companies who
manufacture or use electronic equipment are to be found throughout the UK there are many areas where they are very thin on the ground and other areas
where they are concentrated. It is where they are concentrated. It is
clearly rather pointless to decide to live in say, Abermuirig and pursue a career in the design of r.f. instrumentation if the nearest appropriate company is 200 miles away. In other words, to pursue a successful career it is necessary to go
where the work is. The difficulties of moving from place to place are not overlooked or minimized but it may sometimes be necessary and many on a very generous scale.

Appointments

Advertisements accepted up to 12 noon Tuesday, May th for June issue, sub

DISPLAYED APPOINTMENTS VACANT: $£ 10.00$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 1.50$ per line, minimum three lines BOX NUMBERS: 70p extra. (Replies should be addressed to the Box Number in the
advertisement. c/o Wireless World Dorset House Stamford advertisement. c/o Wireless worla,
PHONE: Mike Thraves $01-2618508$. Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

TELEVISION BROADCAST ENGINEER

We require an Engineer to join the staff of our rapidly expanding Video Cassette Duplicating Facility. The candidate should have a minimum of three years' experience in broad-
cast television with specific knowledge of Quad and Helican cast television with specific knowledge of Quad and
Scan, VTRs, flying spot Telecines and related systems.

The candidate should be qualified to HNC, full technical certificate, degree or equivalent qualification. The job reports
to the Technical Manager and the successful candidate will be
responsible for maintenance of equipment, supervision of responsible for maintenance of equipment, supervision of
technical trainees and the installation of additional facilities. An excellent salary will be offered, commensurate with qualification and experienc

Please reply in confidence to: I.V.S. (U.K.) LTD., 32 Eveline

ELECTRONICS TECHNICIANS

S. LONDON
to $£ 6,000$ p.a.
Electronics technicians are required for interesting work Electronics technicians are required for interesting work
in the Production Engineering Department of Dolby Duties will involve prototype work and the design manufacture and maintenance of A.T.E. and assembly equipment.
and an ability: Several years' experience in electronics and an ability to work without close supervision. Sound For application abilities essential

Th
Phil Marshall
DOLBY LABORATORIES INC.
346 CLAPHAM ROAD LONDON, SW9

Career move in Electronics

Our clients are major companies in avionics, defence, microprocessors, microwave, communication systems, fields

This is an opportunity to secure a sound financial future for yourself and o become involved with the latest evelopments in electronics technology

If you are interested in obtaining a career with a future contact Alan Elmes 0763852453 for the latest in Electronic Vacancies.

PROSPECT RECRUITMENT ELECTRONICS DIVISION
PROSPECT HOUSE, GUILDEN MORDEN, ROYSTON, HERTS, SG8 OJS

FOREIGN AND COMMONWEALTH OFFICE
has vacancies for

BROADCAST RELAY ENGINEERS

to serve a one-year contract (unaccompanied) tour of duty on
to serve a one-year contract (unaccompanied)
the island of Masirah (off the coast of Oman).
Applications are invited from engineers with experience of the operation and maintenance of high-powered radio transmit ters, and who hold a third-year City and Guilds Certificate in
Telecommunications or its equivalent Telecommunications or its equivalent.
SALARY: $£ 16,852$ per annum plus a tax-free allowance of
$£ 1,185$ per annum for a single officer or $£ 3,040$ per annum for an unaccompanied married officer.
Please apply to:
Recruitment Section Hanslope Park, Hanslope
Milton Keynes, MK19 7BH

Computer and Electronics Engineers and Technicians

Can you grow at 30% per year and more?

We do - and to help us maintain our expansion plans, we need dynamic engineers at our new multi-
million pound, minicomputer manufacturing facility at million pound, minicomputer
Ayr in the West of Scotland.

Hardware Support Engineers

 We are looking for people with experience of 16 bitminicomputers and their associated peripherals to plan and monitor the introduction of new models over the next few years and to provide technical support to the
production department on hardware and systems problems.
Some travel to our parent company in Mavnard, Massachusetts, would be required in the course of your duties. Product specific training would be provided
where necessary

Production Engineers

We need Production Engineers with experience of
assembly and test measures and procedures to undertak assembly and test measures and procedures to undertake
process specification and method improvement process specification and method improvement
programmes in our systems test areas, where computers are tested for reliability prior to shipment to the
customer's site.
These positions would suit engineers from similar manufacturing environment having oained experience of the types of problems seen in the field.

Systems Test Technicians

Responsible for test and repair on a full range of
inicomputer systems. These systems include. C P , of various memory sizes; Disc drives; Mag tapes; V.D.U.'s; Printer's, etc.

Test methods include the running of diagnostic software and customer operating systems to a high level acceptability and quality.
The people we are looking for will have at least $2-3$ years experience in the e
preferably in computers.
Comprehensive in-house training is available on a
wide range of our products (i.e. hardware and software

To the right people we offer very competitive salaries and the wide range of benefits you'd expect from the world's largest manufacturer of minicomputers. Our Ayr facility Our Ayr facility provides an excellent working
vironment and Ayr itself is a pleasant coastal reso situated some thirty miles south west of Glasgow, five miles from Prestwick International Airport and has good
road and rail networks south and north road and rail networks south and north. The area affords frist-class housing, medical, educational and social fishing, sailing, etc).
If you have a degree, HNC or equivalent in an
appropriate discipline, together with relevant experience

- we'd like to hear from you. we'd like to hear from you.

Gus Gannon
Digital Equipment Scotland Limited Mosshill, Ayr, Scotland Tel: Freefone 8508

CAPITAL

 29-30 WINSTREET STREET W1P 1 H
LENDON W1: $01-6375551$

Appointments
WIRELESS WORLD MAY 1980
AUDIO VISUAL

TECHNICIANS

 Microprocessor Development Systems Sales Team
Up to $£ 10,000+$ car

 entreprene iruial skills
 * Non-contributo

(h) HEWLETT
 PACKARD

Electronic EngineersWhat you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 8000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application

TJB ELECTROTECHNICAL
PERSONNEL SERVICES,
12 Mount Ephraim, Tunbridge Wells,
Kent. TN4 8AS.

Tel: 089239388 TJB

Please send me a TJB Appointments Registration form
Name
Address

Two experienced technicians are
required by the Croydon Educarequired by
tion Service
One to maintain and repair language laboratories in schools.
knowledge of other visual equip ment would be an advantage.
Salary $£ 4,470-£ 4,923$ per an
num depending on qualifications num depending
and experience:

The second technician will
maintain and repair a range of meintain and repair a range of
autio and video equiument in-
cluding TV receivers in schools. audio and video equip menols.
cluding TV receivers in schools. Salary $£ 5,034-£ 5,457$ per an--
num num inclusive according
qualifications and experienc

Apply in writing giving details of
age, qualifications, present post, Apply in walifications, present post,
age,
relevant work experience and the relevant work experience and two
names and add desses of two
referes rames to The Superintendent,
referes to
Education Service Centre
Pdict Education Service Centre
Princes Road Criydon, Surrey,
stating forwhich post stating for which
be considered.

Further information may be
obtained from the Superiendent. Obtaine.
Mr A. A. Bevan , telephone no. 01 Mr. A. Bevan, telephone no. 01.
684939 .

THE MIDDLEEEX MOSMAL ELECTRONICS TECHNICIAN A Tecthician tiowork with a wide range
eectronic apparaus.
Duties wowd ind

WIRELESS WORLD, MAY 1980

Link Electronics is a successful British Company active in the
international sales of Broadcast television and radio
We We manufacture a range of studio products and radio cquipmen colour cameras to
simple D simple D.A.s. We are also one of the largest suppoliers of outsid
Broadcast vehicles, television and radio studios, all Broadcast vehicles, television and radio studios, all designed and
built in Andover for a worldwide market.
Due to continu
been created.

PRODUCT DESIGN AND DEVELOPMENT ENGINEERS

Experienced and recently qualified graduates are required to join
our research and development team. You will be involved in the
design of new studio products including ailew ren cameras using the very latest analogue and digitial techniques. You
will have the will have the opportunity to see your designs made in volume
production, fulfiling the high technology requirements of the 80 's Applications are invited from engineers who are qualifitid to do degree
or HND level and who preferably have some knowledge of video
engineering and

TEST/QUALITY ASSURANCE ENGINEERS

We reauire engineers at senior and intermediate level to assist in the manufacture of our new range of products for the Broadcast

studio telecivision market.
Applications are invited from engineers with an up-to-date knowledge of digital and linear circuit techniques gained from
experience working on television studio equipment experience working on television studio equipment, radar equip-
ment, or simiar sophisticted products, and qualified to HNC,
HND, or TEC level. HND. or TEC level. Opportunities also exist for recently qualified
engineers who are interested in developing skills in the studio

TV SYSTEMS

ENGINEERS

Experienced senior engineers to work on the design and project
management of Outside Broadcast vehicles and televisid sion This is an opportunity for engineers to become involved in proiects from their initial design concept through manufacture to delivery
and installation. Our custom-built systems reguire a high degree of customer
contact at engineering level from the initial design contact at engineering level from the initial design, to customer
training after completion of the contract, both within the UK and
onviseas training af
overseas.
Applications are invited from engineers with a knowledge of TV
studio engineering gained from experience in this typ Studio engineering gained from experience in this type of work or
from experience on the operational side of television. Employment beniefits include excellent salary, generous holidays,
free ifie and health insurance, pension scheme, subsidised meals and ease apalion expernses.
P further d

Professional Careers in Electronics

All the others are measured by us... At Marconi Instruments we ensure that the very best of communications test instruments and A. T number of interesting opportunities in our Desig Production and Service Departments and we can off attractive salaries, productivity bonus, pension and sick if you schemes together with help over relocation. following details:-

Marconi Instruments

Appointments

Degree Level Electronics Engineers

£9115

Manchester-based
to work on special projects at our studios
The work will involve installation and troubleshooting on advanced video and sound equipment and the provision of specialist maintenance advice and assistance to our operational engineering staff. Some travel to manufacturers in the UK and possibly overseas will be needed. The right people, men or women, will be under 30, graduate or HND with a thorough knowledge of sophisticated digital and analogue technology, ideally in broadcast or CCTV applications.
Conditions of service include 23 days holiday with generous pension and free life assurance benefits. Assistance with re-location is available Write to me with full details of your qualifications and experience by Wednesday April 23 rd.

Bob Connell (Ref. G7), Granada
Television Ltd., Manchester M60 9EA
GRANADA TELEVISION

WIRELESS WORLD, MAY 1980
ST. ©EORGE'S HOSPITAL, s.W. 17 AN OPPORTUNITY
IN ELECTRONICS

 medical and

> HAMPSTEAD HIGH FIDELITY LTD.

FIDELITY LTD.
reauire an experienced, compe
responsibe SERVICE ENGINEER

 Applity in writing giving fuir
periece tor:
The Diroctor

TRAINING IN BROADCASTING OPERATIONS

The BBC reauires technical staff to instruct at its Training Centre
near Evesham, Worcestershire. Duties will involve contributing towards the operational training of
Technical Staff in Television and/or Radio Broadcasting. This includes isstructing Tecchnical Operators who are responsibile for
sound coverace audio mixing camer work and lighting in sound coverage, audio mixing, camera work and lighting in
Television or operating Network Continuity Suites in Radio. The starting salary will be in the range $£ 6,505$ to $£ 7,830$ depending
upon experience and qualifications, rising to $£ 9,130$. upon experience and qualifications, rising to $£ 9,130$. The Training Centre, which is situated in the Worcestershire
countrsyide has Radio and Colour Television Studios using the
latestbrodesting countryside has Racio and
latest broadcasting equipment.
Candidates, male or female, should have recent experience in some
aspect of Technical Operations or Engineering in the Broadcast or aspect of Techinaca Operations or Engnieenng in the Broadcast or
Closed Circuit field dand a good technical knowledge of audio or video equipment. They should preferably have a qualification of
H.N.C. or C. \& G. Full Techen H.N.C. or C. \&G. Full Technological Certificate in Telecommuni-
cations or equivalent. Consideration will be given to providing appropriate quainingt. to otherwisise suitable applicants who do not
hold these qualifications. Excellent welfare and
expenses considered.
If you would like to hear more and receive an application form,
please send a stamped addressed envelope of a t least $99^{\prime} x 4^{\prime}$ to
Head please send a stamped addressed envelope of a t east $99^{\prime \prime}$ " $^{\prime \prime}$ to Head of Technical Operations Training Section, Engineering Training
Department, Wood Norton, Evesham, WR114TF, quoting
reference number 80. E.4019/WW.
Closing date for retum of application forms 14 days after
386
NGINEERING TRAINING DEPARTMENT

Radio Communications Electronics Engineers and Software Designers

Mid-Sussex-S.W. London
Salaries up to $£ 8,000$ To join our expanding R\&D Laboratories covering a wide range of R.F spectrum, from L.F. to V.H.F. Equipments include transmitters and
receivers for marine- and land-based use, radio navaids and radio receivers for marine- and lard-based use, rad
Electronics Engineers should have experience in transmitter or receiver
design, analogue or digital circuit design, micro design, analogue or digita circuit design, microprocessor applications
Sotware Designers should be experienced Programmers with an interest in control, signal processing or navigational software,
Atractive salaries are complemented by excellent prospects and
generous benefits
Contact: David Bird, Redifon Telecommunications Limited andsworth, London, S.W.18. Phone: 01-87

WIRELESS WORLD MAY 1980
Appointments

How to cut through

 the old boy network
You can't possibly cover all the job advertise ments by yourself. ments by yourself.

dvertised what about all those jobs that are neve out them first? - YOU MISS OUT
Break into that closed circle by enrolling with ansdowne. We'll thump your career details onto he desks of senior managers at thousands o companies
approach. il consider you for the immediate jobs
and they'll have hou on file for the future
When they want you ther'"l Ining you - not us
and you're immediately shortlisted for a job you might never have heard abou
Just fill in the coupon and send for our
Career Summary Form and explanaton leaflet. And do it at once because it's the only one Stuart Tait Lansdows apppications. Stuart Tait, Lansdowne Appointments Reg
Desin House. The Mall, London W5 5Ls.
Tel: 01.5792282 (24 hour answering service)

Our clients would like to meet men and women earning between $£ 4,000-88,500$ in any of the following: TEST ENGINEERING -
Callbration engineering
ELECTRONICS ENGINEERING ELECTRONICS SALES
SERVICE ENGINERING
development engineering
Mr./Mrs./Miss
Address

Iansdowne

TEST ENGINEERS NEEDED

ylectrosonic, leaders in the fields of lighting control and audio visual systems. Work will involve testing analogue, digital and microproces-
sor circuits. Applicants should be qualified to ONC or HNC level and
have have experience in analogue and testing digital techniques.
Salary will be around $£ 5,000$, please contact:
Mr. A. Kidd
EEectrosonic Ltd.
815 Woolwich Road
or Tel: 01-855 1101 ext. 37

"Whoever heard of a Resident Field Engineer?'

- Major Installation

If you're an experienced Field Engineer and you're tired of travelling, this is an ideal opportunity to enjoy the best of both worlds.
To ensure our Burroughs equipment is professionally maintained we are now looking for a resident FIELD ENGINEER
You will be part of a team responsible for the maintenance of 3 large scale ($\mathbf{6 6 8 0 0}$), 3 medium scale (B1800), 24 small scale (B90) computer systems and peripherals and over 150 terminals which are linked to
these various systems. For this challenging posi For this challenging position, we prefer that you
qualified to $H N C$ or equivalent level Engineers qualified to HNC or equivalent level. Engineers systems will be considered. We will provide all necessary training on our mainframes and peripherals as part of the successful applicant's personal development.

You will be offered an attractive salary and excellent conditions of employment.
If you're looking for more stability and excellent career prospects contact
Recruitment Manager, Ref. WW, Burroughs, Cumbernauld G68 OBN Telephone 023-67-35457.
Burroughs

VIDEO RECORDING EQUIPMENT SERVICE ENGINEER

With the outstanding success in marketing a new range of airborne
and high speed video tain video servicee engineoer. Full poroduct training will be ge given io te eithe The successful applicant will probably be aged between 25 and The successtuu applicant will probably be aged
35. A Company ca will be porvided attera a pobat
extensive travel within the UK will be necessary.
We pay top rates and the salary will be commensurate with
experience and ability. We offer 4 weeks' annual holiday, free life experience and ability. We offer 4 weeks' annual
assurance, sick scheme and free canteen faciilities.

JHP|

\qquad An J Janes
Perronnel
Offi John Hadland (P.I.) Ltd Nowhouse Laboratories Hemel Hempstead
Herts. HP3 OEL

RADIO

OFFICERS
If your trade or training involves radio operating, you
qualify to be considered for a Radio Officer post with the qualify to be considered for a Ra
Composite Signals Organisation
A number of vacancies will be available in 1980/81 fo A number of vacancies will be available in $1980 / 81$ fo
suitably qualified candidates to be apooited as Traine suitably qualified candidates to be appointed as Trainee
Radio Officers. Candidates must have had teat least 2 years radio operating experience or hold a PMG, MPT or MRG certificate, or expect to obtain this shortly. Regist ered disabled people may be considered On successful completion of 40 weeks' specialist training
appointees move to the Radio Office Grade. appointees move to the Radio Office Grade.
Salary Scales:
Trainee Radio Officer Age 19 £3271 Age 20 £ 3382 Age $21 £ 3485$ Age 22 £ 3611 Age 23 £3685 Age 24 £3767 Age $25+£ 3856$ Radio Officer Age 19 £4493 Age 20 £4655 Age $21 £ 4844$ Age $22 £ 4989$ Age $23 £ 5249$ Age $24 £ 5559$ Age $25+£ 5899$
then by 5 annual incre-
ments to $£ 7892$ inclusive of mhitt working and Saturday. Sunday element
For further details telephone Cheltenham
21491 Ext. 2269,
 21491 Ext. 2269, or write to the address

Land a good job

Your
Radio Officer's qualifications could mean a lot

fyou're thinking of a shore-based job, here's where youll find interesting

 work, job security, good money, and the opportunity to enjoy all the comforts of -at home!The Post Office Maritime Service has The Post Office Maritime Service ha
vacancies at Portishead Radio and ome of its other coast stations for wide variety of duties, from Morse and
teleprinter teleprinter operating to traffic
circulation and radio telephone

O apply, you must have a United Kingdom Maritime Radio Communication Operator's General
Certitifacte or First Class Certificate of eroficiency in Radio-telegraphy or an equivalent certiticate issued by a

Commonwealth Administration or the rish Republic. Preferably you should

 have some sea-going experience. The starting pay at 25 or over will be figure rises to around $£ 7087$. (ff you are etween 19 and 24 your pay on entry will vary between approximately $£ 4229$ and ${ }^{2}$. Overtime is additional, and there is a good pension scheme, sickpay benefits, at least 4 weeks' holidayyear, and excellent prospects year, antion to senior management.
For further information, please write to her at the Waltson on 01-432 4869 EMaritime Radio Services Division (S. M.1.1.2, Room 643 , Union House,
St. Martins-le-Grand, London EC1A AR

COLOUR TELEVISION

 turing an advanced range of colour television receivers at ou
actories in County Durham and Cleveland and wish to make lactories in County Durham and Cleveland and wish to make the
following appointments.

GROUP LEADER - Test Equipment Effective testing of television receivers plays an important role in
ensuring that our very high quality standards are maintained, and we now wish to appoint an experienced engineer of proven ability to control a team of engineers and technicians responsible for all
aspects of production test equinment Responsibilities will include the calibration and maintenance of a sophisticated range of test and signal origination equipment,
emploving both digital and analogue techniques Alth gear is designed and constructed locally, close liaison will be
required with the design team based keep abreast of new developments and influence the new design of
new equipment in the light of pod

SENIOR ENGINEER -
Production Support
A senior engineer with a sound understanding of television systems
and receiver circuits is required to with technical problems arising during receiver manufacture.
Responsibilities will include investigation of design prob Responsibilities will include investigation of design problems,
component fault assessment and the origination of quality assurance component tault assessment and he erigination of quality assurance
procedures to check. that the product conforms to design specifica-
tions. tions.
Both pos Both positions are based at our factory in Bishop Auckland, County
Durham, which iswithin excellent road sail ithd air connections A A wide ronge rast ride and has housing is available and assistance with A r-location expenses will be
available where appropriat. Attractive salaries phoice of leave period life insurance and 4
cher If you are interested in these challenging positions and would like
more details, please write to or telephone:

Appointments

Support Engineer SWINDON

We are looking for a Support Engineer to become involved in professional technical support to a sophisticated production test area in the semiconductor industry.
Production equipment consists mainly of computer-based test systems and Production equip
instrumentation.
You should hold
You should hold $\mathrm{HNC} /$ City \& Guilds Tech. Certificate or equivalent in electronics.
Experience of DEC and Teredyne equipment would be desirable but training will begiven where necessary.
The normal range of fringe benefits expected from a large company plus a competitive
salary and a good working atmosphere are part of what we have to offer In addition you salary and a good working atmosphere are part of what we have tooffer. In addition you
would be working in the industry of the future: The exciting world of microelectronics. Write or phone for an application form to Shirley Cave, Resourcing Officer, Plessey
Semiconductors Limited, Cheney Manor, Swindon, Wilts SN2 2QW. Tel: Swindon Semico
36251 .

PLESSEY

FIELD SERVICE FIELD SERVICE ENGINEERS

TOP JOBS IN ELECTRONICS Posts in Computers, Medical,
Comms, etc. ONC to Ph.D. Free
service Phone or write: BUREAUTECH, Phone or write: BUREAUTECH,
AGY, 46 SELVAGE LANE,
LONDON NW7. LONDON, NW7. 01-906

Product Evaluation Engineer

Dixons are Britain's leading and most successful photographic and home entertainment specialists. We are now looking for a product evaluation en This interesting vacancy, based at Edgware, has arisen from an internal promotion. You would be responsible for accurately assessing the specification
and performance of new and sometimes untried and performance of new and sometimes untried
products. This information is vital to the success of ou marketing department and you will often be working under pressure to meet tight deadlines.
The person we are looking for will have the appropriate test systems. He or she will also need to be appropriate test systems. He or she will also need
self-motivated and able to work unsupervised. Preference will be given to applicants who possess a
Gity \& Guilds (Full Technical Certificate) ONC or HNC City \& Guilds (Full Technical Certificate), ONC or HNC qualification or equivalent. Test and calibration experie preferably in radio and TV will be a great advant
Some knowledge of current safety specifications for consumer electronic products would also be useful. The successful applicant can expect an attractive salary which reflects the importance and responsibilitie of the job. Other benefits include a subsidised restaurant, four weeks' holiday, excellent pension and
insurance schemes and generous staff discount. If you are interested in this opportunity to broaden your career with a dynamic and rapidly expanding company, contact Janet Gearing on Stevenage 4371, or write to her giving brief details at Dixons Photographic (UK) Ltd.,
Camera House, Cartwright Road Stevenage, Herts.

Take your pick

HF-VHF-UHF

Microwave Optics \& Acoustics A challenging and full career in Government Service.
Minimum qualification - HNC Starting salary up to $£ 6,737$. Please apply for an application form to the Recruitment Officer (Dept.ww 1) H.M. Government Communications Centre, Hanslope Park, Milton Keynes
MK19 7BH MK19 7BH

Join us in the forefront of technology

Electronics R\&D

Medical Equipment for Hospitals

A vital role for Electrical/Electronic Engineers

These opportunities are in the Scientific and Technical Branch which provides the
scientific, engineering and other profession services essential to the provision of medical
apparatus instrum apparatus, instrumentation and supplies to spitals.
The successful candidates will join a
ondon-based team working on the specification, laboratory testing, inspection and quality control of a w wide range of medica electrical and electronic equipment used in
the National Health Service. Some UK trave equired
Candidates must have a degree or an electrical engineering at least 2 years or

Department of He
ORPORATION OF LONDON
Department of Architecture and Planning
SENIOR ELECTRONICS ENGINEER $£ 6878$ to $£ 8165$ inclusive (under review)

[^4] advantageous.
raining in electrical engineering, and subsequent experience in the design, testing Experience of medical electrical equipment.

5955 and ($£ 7680$ review) starting between $£ 5955$ and $£ 7680$ depending on
qualifications and experience qualifications and experience. Promotion
prospects. Non-contributory pension schem For further details and an application rm (to be returned by 8 May 1980) writ Civil Service Commission May 1980) write to Basingstoke, Hants, RG21 1JB, or telephone service ore (0256) 68551 (answering service operates outside offfice hours). Please and Social Security

BROADCAST ENGINEER
 Apply Phil Thompeson
Chioe Enainear
A.
 ${ }_{(9993)}$ C.O. VIDEO ENGINERS required by
Studio govideo for higivel deve de
Sign, development and intall

Radio Technicians Work in Communications R\&D and add to your skills

At the Government Communications Headqua carry out research and development in radio carry out research and development in radio communications and their security, including related communications and their security, including related computer applications. Practically every type of system is under investigation, including long-range radio, satellite, under investigation, including long-range radio, satellite, microwave and telephony. microwave and telephony

Your job as a Radio Technician will concern you in developing, constructing, installing, commissioning,
testing, and maintaining our equipment. In performin these tasks you will become familiar with a wide range of processing equipment in the audio to microwave range, involving modern logic techniques, microprocessors, and
computer systems. Such work will take you to the frontiers computer systems. Such work will the
of technology on a broad front and widen your area of expertise - positive career assets whatever the fu
brings. In the rapidly expanding field of digital brings. In the rapidly expanding field of digital
communications, valuable experience in modern logic and
softwari software techniques will be gained.

Training is comprehensive: special courses, both in-house
and with manufacturers, will develop particular aspects of and with manufacturers, will develop particular aspects your knowiedge and you will be encouraged to
advantage of appropriate day release facilities.

You could travel - we are based in Cheltenham, but we have other centres in the UK, most of which, 'e
Cheltenham, are situated in environmentally attractive locations. All our centres require resident Radio Technicians and can call for others to make working visits. There will also be some opportunities for short trips
abroad, or for longer periods of service overseas. You should be at least 19 years of age, hold or expec You should be at least 19 years of age, hold or expect to
obtain shortly the City and Guilds Telecommunications Technician Certificate Part I (Intermediate), or its. equivalent, and have a sound knowledge of the principles
of telecommunications and radio, together with experience of maintenance and the use of test equipment. If you are, or have been in HM Forces your Service trade may allow us to dispense with the need for formal qualifications
Registered disabled people may be considered. Pay scales for Radio Technicians start at $£ 3900$ per.
annum rising to $£ 5530$ and promotion will put you annum, rising to $£ 5530$, and promotion will put you on
the road to posts carrying substantially more; there are also opportunities for overtime and on-call work, paying good rates
Get full details from our Recruitment Officer, Robby Robinson, on
Cheltenham (0242) 21491, Ext 2269, or write to him at GCHO, Oakley, Priors write to him at GCHO, Oakley, Priors
Road, Cheltenham, Glos GL52 5AJ. W Road, Cheltenham, Glos GL52 5AJ. We
will invite suitable applicants (expenses paid)
for interview at Cheltenham.

Recruitment Office	(Government Communications Headquarters
Oakley, Priors Road, Cheltenham (IL.52 5AJ	

 Safeguard your home, shop, etc.,
from burglars and vandals with the Send S.A EM avaliable. Send S.A.E. for comprenensive
price list. e.g. $£ 6$ for one of our fully pice tis.e.e.g. E6 for one of our f flly
weather-prooted steel Bell-Boxes
the professionals Lawrence, $42 / 45$ New Broad
Street, London, "Don't buy in Kist
buy in
Bits

COMPUTER PERIPHERALS

N.C.R. CRAM memory system 149 M bytes storage 8 bit TTL
parallel $1 / 0$. Like 384 floppy discs in one unit! Needs 3 Ph supply
Fixed head sealed disc unit 1 M bits storage, includes R / W
electronics but no controller

CHROMATRONICS, COACHWORKS HOUSE TELEPHONE: (0279) 418611

BURGLARS

NEW 1980 Ed.

 WORLD RADIO T.V. HANDBOOK COMPLETE DIRECTORY OF IN-TERNATIONAL RADIO \& TV.
TV. 1980 THE RADIO AMATEUR's
H/B Dy ARL
DNDERSTANDING Mice: : E8.00
CROCESSORS
 J. W. Streater Price $\mathrm{E}_{2} .50$ IIGH PERFORMANCE LOUD

 By M. G. Acroggie Price: E18.95
ALEACTICAL NTRO. TO
EECTRONIC CIRCUTITS ELECTRONIC CIRCUITSS
OM H Jones
PRINTED CIRCUITS H / E. 5.25
 INTRODUCTION TO VLSI SYS-
TEMS
by C. Mead Price: $£ 12.00$
*All prices includé postage *
THE MODERN BOOK CO.

19-21 PRAED STREET
LONDON W2 1NP
Phone $402 \cdot 917$
Closed Sat 1 p.n.

,

ELECTRONICS DESIGN SERVIC

COMPLETE SERVIIE To manu

pert
paril
anal
sign
sign

CAPACITY AVAILABLI

 CAPACIT
 Pciand Final Assembly, Repaiss and
Sorvicing

 $\xlongequal[\substack{\text { PCB ARTWRK } \\ \text { with AESIGN SERVICE } \\ \text { component } \\ \text { notation masters }}]{ }$

Classified

TURN YOUR SURPLUS Capacitors
transistors, etc, into cash. conta

PCB ASSEMBLY CAPACITY AVAILABLE Low or high volume, single or double
sided wes enpecialise in flow line
assembly. Using the Zevarron flow soldering
system and on line cutting, we are able
assemblie
priced.
Find out how we can help you with
your rroduction. Phone or write. We
will be pleased to TW ELECTRONICS LTD.

LABLE

こーシ＝ELECTRONic BROKERS LIMITED

Brand New－
Top Quality Performance \＆Value
HM 307
Single Trace DC
$\mathrm{MHz}, 5 \mathrm{mV} / \mathrm{cm}$ $\xrightarrow[\text { MHz，} 5 \mathrm{mV} / \mathrm{cm} \text { ．}]{\substack{\text { Puiltin }}}$
Component Teste
£149 HM 312 Dual Trace DC－20 MHz，
$5 \mathrm{mV} / \mathrm{cm}$ ．Sweep Speeds $5 \mathrm{mV} / \mathrm{cm}$ ．Sweep Speeds
$40 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{cm} 8 \times 10$
$£ 250$
Uther models sp to 50 MHz bandwidth available．Prices
and full specs on request．Full demonstration at our premises．Quick

ww－O94 FOR FURTHER DETAILS

STEP INTO A NEW WORLD WHEN YOU DISCOVER مص

For beginners or professionals，the Maplin catalogue will help you find just about every thing you need for your project．

Over 5，000 of the most useful components－from resistors to microprocessors－clearly described and illustrated．

INDEX TO ADVERTISERS MAY
Appointments Vacant Advertisements appear on pages 138－151

	age		page		page
Acoustical Mfg．Co．Ltd		G．P．Industrial Elec．Ltd．		Pascal Electronics	
Adcola Products	28	Guide to Broadcasting stations		PBRA Ltd．${ }^{\text {P．Compone }}$	
Ambit International				Powertran Electronics	3，1
Antex	${ }^{79}$	Hall Electric Ltd．	2	Pye Unicam ．．．．．．．．	
A．P．Products	127	Happy Memories（ilectronics（London）Ltd			
		Harrison Bros．．．．．	109	Quantum Electronics	16 109
		Hart Electronics			
Bach－Simpson	70	H．H．Electronic		Racal Recorde	
Barrie Electronics Ltd	119	／Book	11	Radio Compon	
B．Bamber Electronics	${ }^{126}$	Hitachi Denshi	4	Radio Sh	
Barkway Electronics Ltd．	129			Radio Soci	
Bell \＆HOw				Ralite P．F	
		İL．P．Electronics Ltd	92，93， 112	R．C．S．Electronics	
Butterworth \＆Co．Ltd．		Industrex Ltd．．．nplic．		Research Commun	
		Interface Co			
Cambridge Learning	${ }_{27}^{23}$	Interface Quartz Devices Interport Main Stores		Sandwell Plant Ltd	
Carston Electronics Ltd	${ }_{120}^{26,27}$			Science of Cambridge	
Codespeed	119，124			Shure Electronics	
Com－Tek		Keithley Insts．		SME Ltd．	
Computer Appreciation	125	Kramer \＆Co．		Softy Ltd	
Continental Specialities	${ }^{25}$			Sonic sound Audio	
	104			Southern Electronics	
		Lascar Electronics		Special Products Ltt	
Cropico Ltd．．．		Levell Electronics Lta．		Surrey Electronics Ltd	
		Lowe Electronics Ltd．		Swanley Electronics Ltd	
				Tandy Corporation	
Danavox（GB）Ltd Dislay Flectronics	${ }_{118}^{94}$	Maplin Electronic Supplies	Cover iii， 69	${ }_{\text {Technomatic }}^{\text {Tetd }}$ Leta	
（ Dispay Electronics	115			Teleradio Electronics	
		${ }_{\text {M }}$ MCdelec		Thurlby Electronics	
		Mierocirch			
Electronic Brokerers İd	i22，1i3，${ }^{28}$	Milward，	109	Valradio Ltd．	
Electro－Tech Comps		MTL Microtesting Lid．	106	Vero Speed	
$\underset{\text { Electrovave }}{\text { Electrovoice }}$ ．．．．．．	129 28	Mullard Multico Solders Lid		Videotime Products	${ }^{133}$
Electrovoice	28 102	Multicore Solders Lid．		vHS Committee ．．．	
		Newbear Computer Stores	104， 130	West Hyde Developme	
Farnell Instruments Ltd．	35， 1028	Newtronics		Wilmot reeden Electronics Ltd．	2，91，115
－Filuke（GB）	…．．． 80	Olson Electronics			
Fylde Electronic Labs	16	OMB Electronics	33	z\＆i Aero Services L	28，110

overseas advertisement
 Hungary：Mrs，Edid，Bjaiss，Hungexpo Advertising Agency，

 Telexb： 37342 Kompass

\qquad

Post this coupon now for your copy
Please send me a copy of your 280 page

name

\qquad

กากคนำ
 ELECTRONIC SUPPLIESLTD

All mail to：
P．0．Box 3，Rayleim Essex SSG 81 P
relephone：Southend（0702） 559155. Shep： 284 Londen Road，Westelifi－on－Gear，Essex．（Closed on Monday）．

[^5]

[^0]: Kin!s Parades, Cambridge, Cambs., C.132 15s.)

[^1]: Fig. 3. Estimation of range for s.s.b. system taking into account fading.

[^2]: Note that A is the input-current gain step

[^3]:

[^4]:

 ding outside broadcasts from Corporation premises will

[^5]:

